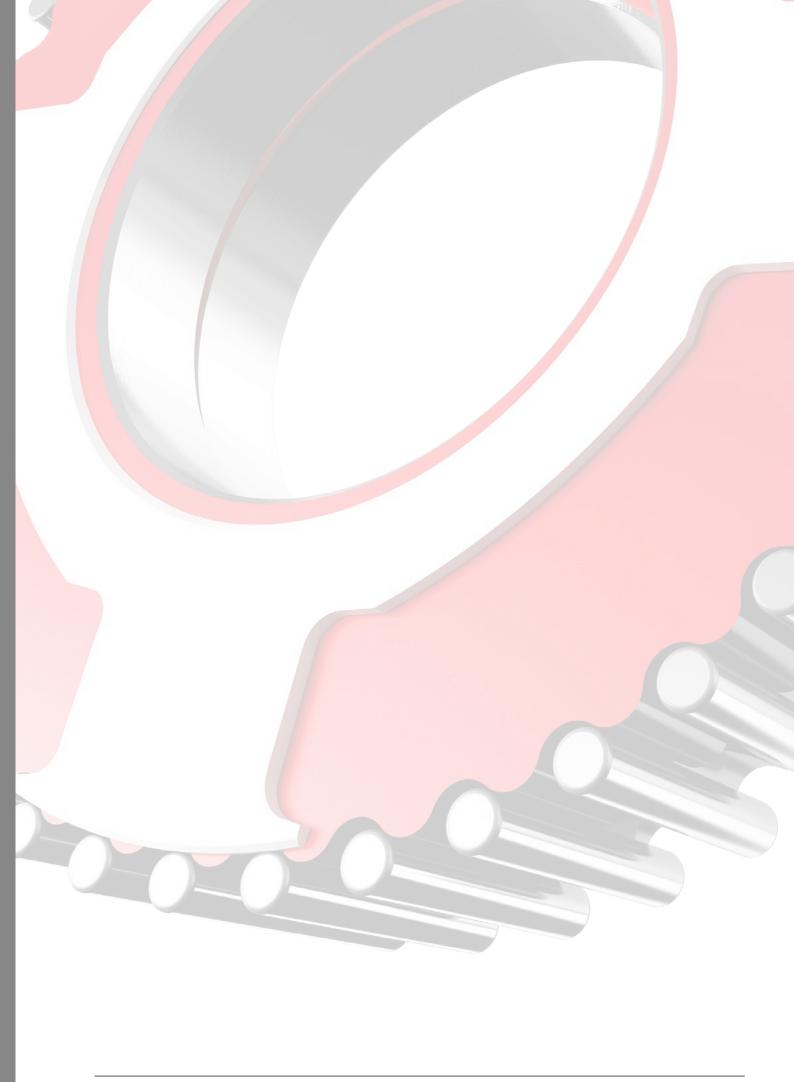


HIGH PRECISION REDUCTION GEARS

HIGH PRECISION ACTUATORS



TwinSpin® **Drive**Spin® CATALOGUE Edition II/2019

HIGH PRECISION REDUCTION GEARS

TwinSpin®

G series

T series

E series

H series

M series

DS series

DSH series

DSM series

DSF series

SPECIAL SOLUTION

HIGH PRECISION ACTUATORS

DriveSpin®

Customized gears

Customized actuators

SPINEA

G series

Tseries

E series

H series

M series

DSH

Gears

Actuators

TwinSpin® - HIGH PRECISION REDUCTION GEARS **DriveSpin® - HIGH PRECISION ACTUATORS**

The SPINEA catalogue, as well as further catalogues and publications are available on our website www.spinea.com in the DOWNLOADS section. You can also find helpful information on our multimedia USB, which includes technical documentation. In addition, it also includes an interactive presentation of the TwinSpin® operating principle and 2D/3D technical drawings. Please contact the SPINEA sales department or your sales representative for your free copy.

© SPINEA, s.r.o. & SPINEA Technologies s.r.o. 2019 All rights reserved.

Reproduction in part or in whole is not permitted without prior authorization from SPINEA, s.r.o.

Although maximum care has been taken while preparing this catalogue, liability cannot be accepted for any errors or omissions thereof.

Company Address: Plant Address: SPINEA, s.r.o. SPINEA, s.r.o. Okrajová 33 Ku Magašu 702/3 080 05 Prešov 080 01 Haniska - Prešov Slovakia, EU Slovakia, EU

Sales Department: +421 51 770 01 56 Tel: E-mail: info@spinea.com sales@spinea.com Web: www.spinea.com

SPINEA TECHNOLOGIES

Company Address: SPINEA Technologies s.r.o. Volgogradská 13 080 01 Prešov Slovakia, EU

Web: www.spinea-technologies.com

Specifications contained in this catalogue are subject to innovation change without prior notice.

NEW EDITION

Trademark TwinSpin® registered in: EU member states. Trademark DriveSpin® registered in: SK, DK, GB, IL, IN, JP, KR, SE, TR, US, AT, BX, CH, CN, CZ, DE, FR, PL, RU

I.	CONTE	NTS	6
II.	ABOUT	TUS	10
1.	TwinS	pin® - GENERAL INFORMATION	12
•••••	• • • • • • • • • • • • •	arts description	14
		ing principle	15
	Advant		16
		pin® SERIES	
Z .	.		18
		at overview	18
		in® torque range	19
	Applica		20
	Referer		23
	2.1 G S		24
		Product charakteristics	26
		Ordering specifications	27
		Technical data	28
		Drawings	30
	2.2 GF	I SERIES	38
		Technical data	38
		Drawings	40
	2.3 TS	SERIES	44
		Product charakteristics	46
		Ordering specifications	47
		Technical data	48
		Drawings	50
	2.4 E S	SERIES	60
		Product charakteristics	62
		Ordering specifications	63
		Technical data	64
		Drawings	66
	2.5 H.S	SERIES	74
		Product charakteristics	76
		Ordering specifications	77
		Technical data	78
		Drawings	80
	26 M	SERIES	86
	2.0	Product charakteristics	88
		Ordering specifications	89
		Technical data	90
		Drawings	92
3 DFC	ΡΩΡΜΔ	NCE CHARACTERISTICS	96
	3.1 3.2	G, GH, T, E, H, M series service life calculation M series maximum continuous input speed (n _{c max})	96 96
	3.2 3.3	G, GH, T, E, H, M series maximum acceleration and braking torques	96
	3.4	G, GH, T, E, H, M series maximum emergency stop torque (T _{em})	96
	3.5	Allowable radial-axial load and moment load on the output flange of the G, GH, T, E, H	96
	3.5.1	Allowable radial-axial load and moment on the output flange of the M series	99
	3.5.2	M series output bearings load capacity	100
	3.5.3	M series output bearings allowable load	100
	3.5.4	M series allowable axial load F _{a max}	100
	3.5.5	M series allowable moment M _{emory}	101
	3.5.6	M series allowable radial load F _{r max}	101
	3.5.7	M series output flange allowable load when applying the F_r radial force and F_a axial force	
	3.6	G, GH, T, E, H, M series output flange tilting stiffness and deflection angle	102
	3.7	G, GH, T, E, H, M series lost motion, hysteresis and torsional stiffness	102
	3.8	G, GH, T, E, H, M series torsional vibrations	103
	3.9	G, GH, T, E, H, M series angular transmission accuracy	104
	3.10	G, GH, T, E, H, M series no-load starting torque	104
	3.11	G, GH, T, E, H, M series back-driving torque	104
	3.12	G, GH, T, E, H, M series maximum moment of the input shaft (M _{c in})	104
	3.13	G series efficiency chart	105

••••	•••••
Twin Spin®	Drive Spin ^o
••••	••••

	3.14	GH series efficiency chart	108
	3.15	G series no-load running torque	109
	3.16	GH series no-load running torque	110
	3.17	T, E, H, M series efficiency chart	111
	3.18	G, GH, T, E, H, M series rotation direction and reduction ratio	113
4.	Twins	Spin® SELECTION PROCEDURE	114
•••••	4.1	G, GH, T, E, H, M series duty cycle	114
	4.2	G, GH, T, E, H series selection flowchart	115
	4.2.1	M series selection flowchart	116
	4.3	T, E, H series selection flowchart	117
	4.3.1	M series selection example	119
5 .	ASSE	MBLY	122
•••••	5.1	G, GH, T, E, H, M series assembly manual	122
	5.1.2	G series tightening torques	122
	5.1.1	T series installation examples - unsealed gears	122
	5.1.3	T series installation procedure	124
	5.1.4	Dimensions and tolerances of the T series connecting parts example	126
	5.1.5	T series connecting parts tolerances	128
	5.1.6	T series circumferential and face run-out values	128
	5.1.7	T series tightening torques	130
	5.2	E series installation examples	130
	5.2.1	E series installation examples - unsealed gears	130
	5.2.2	E series installation procedure	132
	5.2.3	E series connecting parts dimensions and tolerances	132
	5.2.4	E series mounting tolerances	134
	5.2.5	E series tightening torques of connecting bolts	136
	5.3	H series installation examples	137
	5.3.1	H series mounting examples	137
	5.3.2	H series installation procedure	138
	5.3.3	H series mounting tolerances	138
	5.3.4	H connecting screws tightening torques	139
	5.4	M series installation examples	140
	5.4.1	M series installation examples	140
	5.4.2 5.4.3	M series installation procedure	142
	5.4.5 5.4.4	M series connecting parts deematrical deviations	142
	5.4.5	M series connecting parts geometrical deviations M series connecting screws tightening torque	142 143
	5.5	Lubrication, cooling, preheating	143
	5.6	Thermal conditions	147
	5.7	Motor flanges	147
6.		ERAL INFORMATION	148
		Maintenance	
	6.1 6.2	Delivery conditions	148 148
	6.3	Transport and storage	148
	6.4	Warranty	148
	6.5	Final statement	148
	6.6	Cautions concerning the application of the TwinSpin® high precision reduction gear	148
	6.7	EAC	1/10

7 .	DriveSpin® - GENERAL INFORMATION	150
	Advantages	152
8.	DriveSpin® SERIES	154
	Product overview	154
	Ordering specifications	156
	8.2 DS series	158
	Product characteristics	160
	Overview	161
	Drawings	162
	Technical data	170
	Moment of inertia	174
	Performance characteristics	175
	8.3 DSH series	178
	Product characteristics	180
	Overview	181
	Drawings	182
	Technical data Moment of inertia	190 194
	Performance characteristics	194
	8.4 DSM series	198
	Product characteristics	200 201
	Overview Drawings	202
	Technical data	202
	Moment of inertia	208
	Performance characteristics	209
	8.5 DSF series	212
	Product characteristics	214
	Overview	215
	Drawings	216
	Technical data	220
	Moment of inertia	222
	Product characteristics	223
9.	CONFIGURATION MATRIX	224
•••••	Feedback availability	224
	Type of electrical connection	226
	Power connection	228
	Signal connection	229
	Hybrid connection	231
	Technical specifications of thermistors	232
	Identification labels	233
10.	ACCESSORIES CONFIGURATION	234
	Ordering codes for Cabl <mark>es</mark>	234
11.	PERFORMANCE CONDITIONS AND TECHNICAL TERMINOLOGY	236
	TwinSpin [®]	236
	DriveSpin [®]	236
	Input speed	236
	Output speed	236
	Input torque	236
	Output torque Ratio	236 236
	Hollowshaft diameter	236
	Rated output torque, Rated input speed, Service life	237
	Motor rated torque	237
	Continuous output torque	237
	Motor rated current	237
	Motor stall torque	237
	Motor stall current	237
	Motor peak torque	237
	Momentary peak output torque	237

	Motor peak current	237
	Motor back-EMF constant	237
	Motor torque constant	237
	Terminal resist <mark>anc</mark> e (L-L)	238
	Terminal indu <mark>ctan</mark> ce (L-L)	238
	Number of po <mark>les</mark>	238
	Electromagnetic brake DC supply	238
	Electromagnetic brake torque (at motor) Protection class	238
	Motor insulation class	238 238
	Paint	238
	Motor number of phases, Motor type of connection	238
	Inertia a <mark>t in</mark> put	239
	Duty c <mark>ycle</mark>	239
12.	ASSEMBLY	240
•••••	Values of the axial and radial run-out of the output flange	240
	Installation of components on the output flange of the electric actuator	240
13.	FAQ	242
	Certificates	243
14.	YourSpin - GENERAL INFORMATION	244
	14.1 Customers / Special reduction gears	245
	TwinSpin® reduction gear with right angle gearbox	245
	TwinSpin® hollow shaft reduction gear with a pre-stage	245
	Special solutions - TwinSpin®	245
	14.2 Customers / Special solutions	246
	RotoSpin - High precision rotery modules	246
	RotoSpin - Rotery modules - series A	246
	RotoSpin - Rotery modules - series B	247
	14.3 Customers / Special actuators	248
	DriveSpin® actuators	248
15. (GENERAL INFORMATION	250
	15.1 Maintenance	250
	15.2 Delivery conditions	250
	15.3 Transport and storage	250
	15.4 Warranty	250
	15.5 Final statement	250
	15.6 Cautions concerning the application of the TwinSpin® high precision reduction gear	250

ZERTIFIKAT

SPINEA, s.r.o. is a modern Slovak engineering company, engaged in the development, manufacturing and sales of high-precision reduction gears, sold under the trademark TwinSpin®. An invention of a Slovak engineer was the impulse for the company establishment in 1994. The TwinSpin® high precision reduction gears are serially manufactured, based on the grant of an international patent. The TwinSpin® gears belong to a category of hi-tech products and represent a unique technical solution, which integrates radial-axial bearings with a high precision reduction gear into a single compact unit. The products of the company are suitable for applications, which require high reduction-gear ratio, high kinematic precision, zero-backlash motion, high torque capacity, high rigidity, compact design in a limited installation space as well as low weight. They are widely used in automation and industrial robotics, in the field of machine tools manufacturing, in navigation and camera equipment, medical systems and in many other fields.

♥SNAS

IAF UNAS

CERTIFICATE

SPINEA TECHNOLOGIES

SPINEA Technologies, s.r.o. is a young research and development technology company, which is engaged in continuous development in the field of electrical actuators based on the G and TS-I bearing reducer platform, as well as development of customer-oriented mechatronic units. The company was founded at the end of 2012 through separation of the electric drives department from the parent company SPINEA s.r.o., while the impulse was to bring unique technologies, methods, and solutions for the industrial market, followed by their implementation into the production process.

1. TwinSpin® - General information

The TwinSpin® (TS) high precision reduction gears are based on a new reduction mechanism and a new design of the radial-axial output bearing. As a result, they represent a new generation of power transmission systems. The notion "TwinSpin®" indicates the full integration of a high precision trochoidal reduction gear and a radial-axial bearing in a single unit. This new transmission concept allows the use of the reduction gears directly in robot joints, rotary tables and wheel gears in various transport systems. The TwinSpin® high precision reduction gears are designed for applications requiring a high reduction ratio, high kinematic accuracy, low lost motion, high moment capacity and high stiffness of a compact design with limited installation space and low mass.

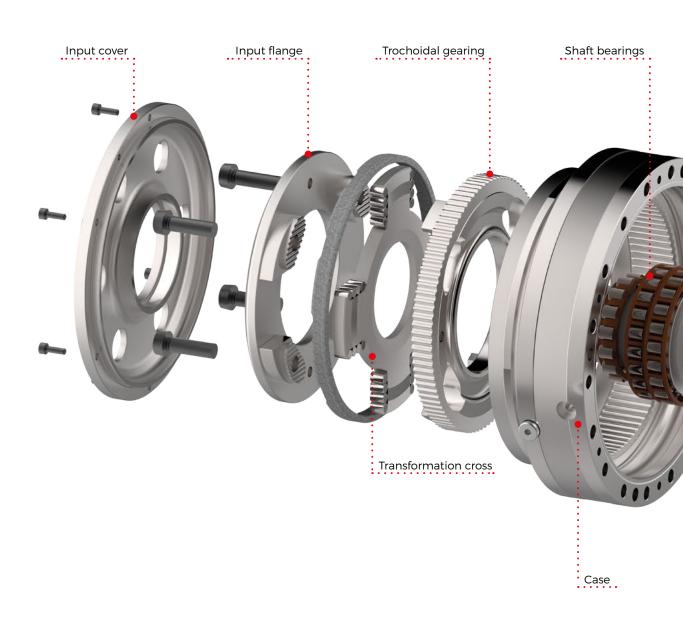
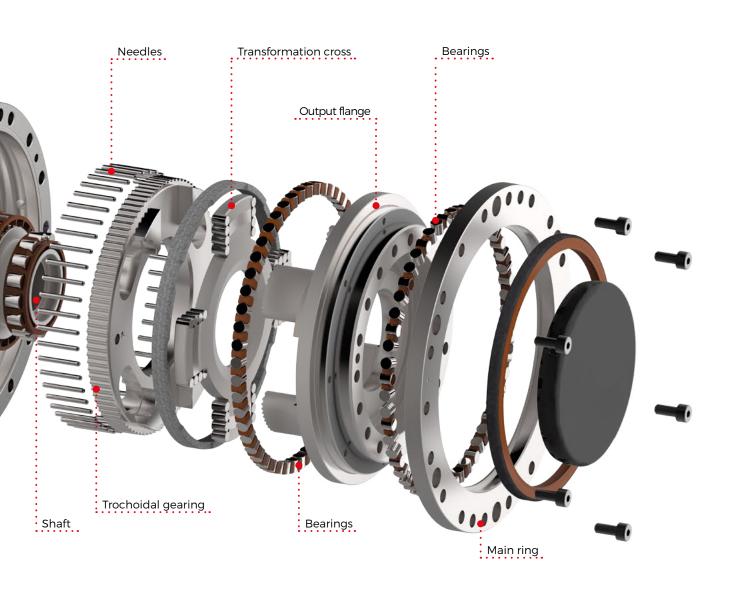



Fig. 1.a: TwinSpin® reduction gears components

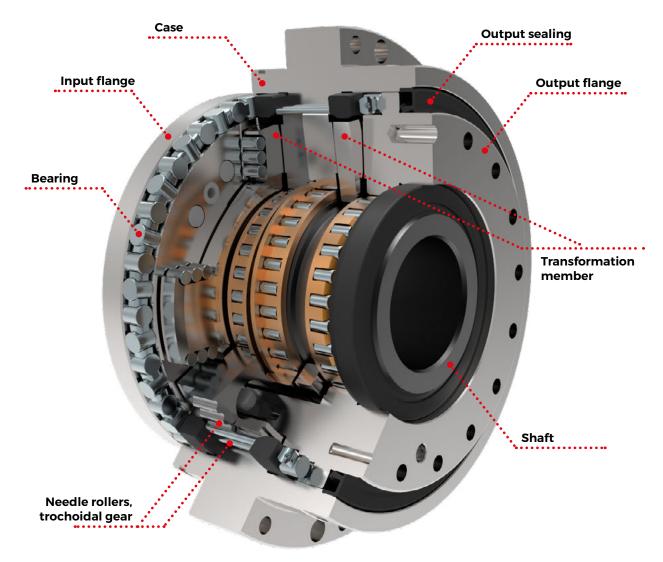


Fig. 1.b: TwinSpin® cross section

Output sealing

On the output flange side, it prevents internal contamination and lubricant leakage from the reduction gear.

Case

Incorporates the high capacity precision radial-axial output bearings integrated in the reduction gear.

Flanges

Input and output flanges are fixed together by fitted bolts, and rotate at reduced speed in the radial-axial output bearing relative to the case.

Shaft

High-speed member of the reduction mechanism carried by roller bearings in the flanges. Bearing raceways are ground directly on the shaft and the flanges. The shaft eccentrics rotationally support the trochoidal gears via roller bearings.

Trochoidal gearing

Their trochoidal profile with almost 50% simultaneous meshing ensures transmission of high torque and backlash-free performance of the reduction gear.

Transformation member

Transforms the planetary motion of the trochoidal gears to the rotary motion of a pair of flanges.

 $\alpha \text{=0}^{\circ}$

The input shaft of the reduction gear is in zero point.

 $\alpha=90^{\circ}$

Rotation of the input shaft by 90° causes the revolution of the cycloidal gear (1/4 of spacing of the cycloidal tooth). Direction of the cycloidal gear rotation is opposite with regard to the rotation of input shaft.

 α =180 $^{\circ}$

Rotation of the input shaft by 180° causes the revolution of the cycloidal gear (2/4 of spacing of the cycloidal tooth).

α=270°

Rotation of the input shaft by 270° causes the revolution of the cycloidal gear (3/4 of spacing of the cycloidal tooth).

α=360°

Rotation of the input shaft by 360° causes the revolution of the cycloidal gear (4/4 of spacing of the cycloidal tooth).

Fig. 1.1: Operating principle

Advantages

The TwinSpin® high precision reduction gears meet the requirements of even the most demanding customers across all industrial fields. With optimal price-performance ratio they reliably ensure parameters such as high precision, compactness, high tilting as well as torsional stiffness, low weight, low vibrations or wide range of gear ratios.

Exceptional precision

With the utilization of our own patented design the reduction gears represent an unrivalled precise solution, while at the same time keeping a wide range of dimensions and gear ratios.

High overload capacity, long lifetime

The reduction gears are characterized by easy implementation and excellent tilting and torsional stiffness parameters. At the same time they keep a trouble-free operation with exceptionally low noise and vibrations at a wide range of application environment temperature ranges. They rely on high resistance and overload capacity of the gearbox with integrated radial-axial bearings. Subsequently, your initial investment will project into maintenance cost saving, during entire utilization time.

Uniquely balanced design

TwinSpin® represents an integration of high load carrying reduction gear with a unique reduction mechanism and high load carrying output bearings into one compact unit. Small dimensions and first-class technical parameters lead to high utility value in an optimal performance, dimension and price ratio.

Technical support

Our expertly prepared team of specialists is at your disposal in order to solve any issues. The use of first-rate materials and the manufacturing process are guaranteed by ISO 9000 certificates, and are a fundamental prerequisite of the correct and reliable functioning of our products.

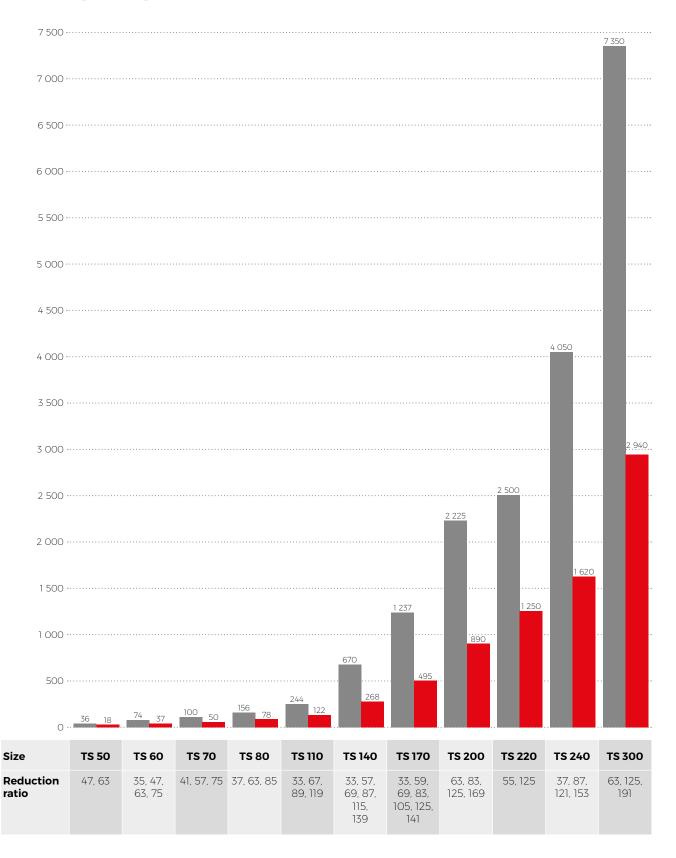
Gseries

Tseries

Eseries

Hseries

M series


2. TwinSpin® series

Acceleration and braking torque [Nm] Rated output torque [Nm]

Robotics

6-axis robots, scara robots, portal robots, gantry robots

ABB product

Automation and service robotics

Service robotics, general automation, assembly equipment, rotary tables, welding positioners

Machine tools

Turning and milling machines, grinding machines, bending machines, cutting machines (waterjet, laser, plasma, etc.) tool changers, palet changers, rotary tables, cutting heads, woodworking machines, marble and stone machines, rotary transfer machines, woodworking machines

*Illustration image

Navigation and security

Radars, navigation equipment, surveillance optoelectronics systems, security and defense equipment, simulation systems

Medical equipment

Surgical robots, radiosurgery devices, medical and rehabilitation devices, scanners, dental milling machines, other medical equipment

Other applications

Inspection, measuring and testing equipment, textile machines, packaging machines, semiconductor manufacturing, remote camera systems (film industry), calibration systems, rotary positioners in science projects

*Illustration image

Robotics

6-axis robots, scara robots, portal robots, gantry robots

Automation and service robotics

Service robotics, general automation, assembly equipment

Machine tools

Turning and milling machines, grinding machines, bending machines, cutting machines, tool changers

Medical equipment

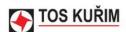
Medical and rehabilitation devices, scanners, dental milling machines, other medical equipment

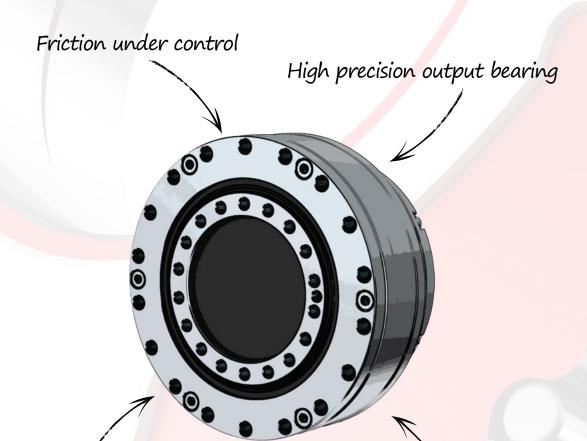
Navigation and security

Radars, navigation equipment, surveillance and camera systems, security and defense equipment

Other applications

Measuring equipment, woodworking machines, textile machines, packaging machines, semiconductor manufacturing





Robust design and overload capacity

High torque density

Gseries

EXCELLENCE IN PERFORMANCE

2.1 G SERIES

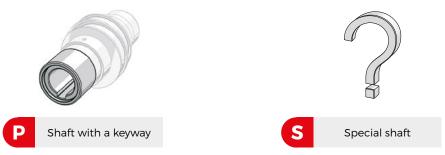
Advantages

- high tilting stiffness
- low friction
- high precision output bearing
- high torque density


- reduced lost motion settings
- high torque overload capacity

The **G series** a new generation of TwinSpin® high precision reduction gears with a new design of the main bearing and improved performance for the most demanding applications. G series brings increase in torque to weight ratio in comparison with the previous generation. Innovative design of main bearing reaches unprecedented tilting stiffness, high precision of the output bearing and modularity of design which allows customised solutions. Further improvements introduced with G series brings further friction reduction in transmission mechanism, lower hysteresys and low settings of Lost Motion, especially in small sizes. Finally with G series new sizes of reducers are introduced in standard and hollowshaft design to broaden portfolio and application range of TwinSpin® reducers.

	Tab. 2.1a: G series features							
	Case	Through holes in case						
4	Input flange connection	The shaft sealing / adapter flange is offered in the following versions: a) motor connection flange b) sealed input cover c) without a flange						
	Input shaft design	The input shaft is offered in the following versions: a) shaft with a keyway b) according to a special request						
	Installation and operation characteristics	A wider range of modular configurations						



Note: An example of an ordering code of a modified TwinSpin® G series reduction gear with a motor flange: TS225 - 55 -G- P24 - M235 - P231. The markings M235 and P231 for a specific modification are defined by the manufacturer.

Shaft version

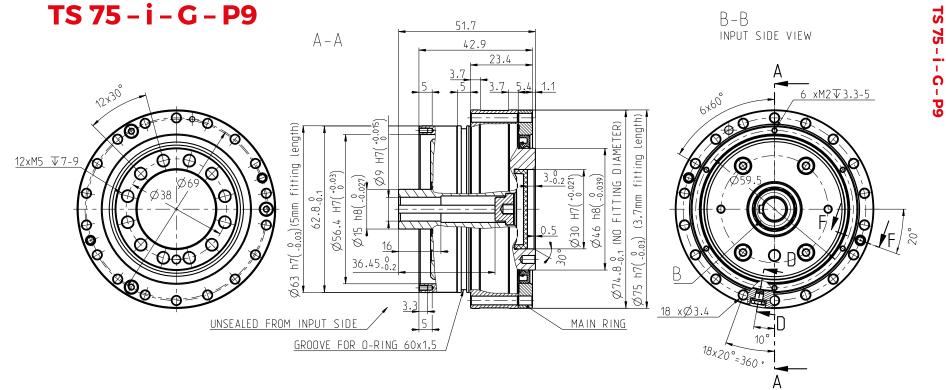
Note: Drawings shows maximum possible size of key-way applicable in each size of TwinSpin® reducer.

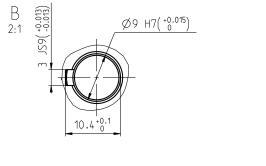
Tab. 2.	b. 2.1c: G series rating table									
Size	Reduction ratio	Rated output torque	Max. acceleration / deceleration torque	Maximum permissible torque at emergency / E-stop	Rated input speed	Maximum input speed 10)	Lost motion	Hysteresis	Angular transmission error 1) 7)	No-load starting torque (max) 9)
	i	T _r [Nm]	T _{acc} [Nm]	T _{em} [Nm]	n _R [rpm]	n _{max} [rpm]	LM [arcmin]	H [arcmin]	ATE [arcsec]	[Nm]
TS 75	41 63 75	35	70	175	2 000	4 800 5 000 5 400	<1	<1	72	0.15 0.1 0.1
TS 85	33 63 79	75	150	375	2 000	4 400 4 800 5 000	<1	<1	72	0.25 0.2 0.2
TS 95	43 73 95	85	170	425	2 000	4 000 4 500 4 800	<1	<1	72	0.35 0.3 0.3
TS 115	43 69 123	173	346	865	2 000	4 200 4 300 4 800	<1	<1	60	0.5 0.45 0.4
TS 155	53 109	460	1 150	2 300	2 000	3 400 3 800 4 200	<1	<1	40	0.8 0.6 0.6
TS 185	57 67 117	780	1 950	3 900	2 000	3 500 3 700 4 300 4 400	<1	<1	30	1.4 1.4 1.2 1.2
TS 225	55 69 137	1 270	3 175	6 350	2 000	3 200 3 400 4 000	<]	<1	30	1.8 1.5 1.4

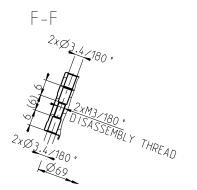
RIGHT TO CHANGE WITHOUT PRIOR NOTICE RESERVED

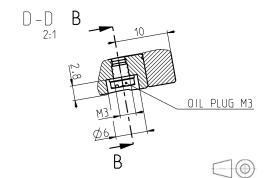
- 1) Mean statistical value. For further information see chapter Torsional stiffness, Tilting stiffness.
- 2) Load at output speed 15 rpm and L_{10} = 12 000 hrs.
- 3) Moment M_c value for $F_a = 0$. If $F_a \neq 0$, see chapter 3.5.

- 4) Axial force F_{a max} value for M_c = 0. If M_c ≠ 0 see chapter 3.5.
 6) The parameter depends on the version of the high precision reduction gear.
 7) The parameter depends on the version of the high precision reduction gear, ratio and lost motion.
- 8) The values of the parameters are informative. The exact value depends on the specific version of the high precision reduction gear.
- 9) Temperatures of the high precision reduction gear lower than 20°C will cause higher no-load starting or back driving torque.
- 10) Instantaneous speed peak that may occur within the working cycle.

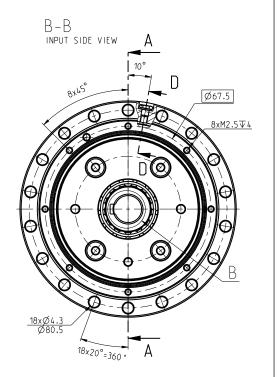

Tab. 2.1c: G series rating table - continued										
Size	Reduction ratio	Max. backdriving torque 9)	Torsional stiffness 50-100% T, 1)	Moment stiffness 1)	Rated moment 2) 3)	Allowable moment	Allowable radial force 2)	Allowable axial force 2) 4)	Input inertia 8)	Weight 8)
	i	[Nm]	k _t [Nm/arcmin]	M _t [Nm/arcmin]	M _c [Nm]	M _{cmax} [Nm]	F _r [kN]	F _{a max} [kN]	I [10 ⁻⁴ kgm ²]	m [kg]
	41	5	8.1							
TS 75	63	8	8.2	70	95	190	1.8	6.4	0.019	0.95
	75	10	8.4							
	33	5	9.5	90				6.8	0.034	1.7
TS 85	63	15	10.8		168	336	2.2			
	79	20	10.8							
	43	20	15	120	205	410	3.5	11.1	O.14	1.9
TS 95	73	27	15.3	120						
	95	38 18	15.5							
TS 115	43	30	31 31	in] M _t [Nm/arcmin]	275	550	4	12.5	0.29	3.2
13 113	123	42	32							
	53	50	85				8.3	26.1	0.96	8.3
TS 155	109	80	88	900	820	1 640				
	133	115	90							
	57	85	147							
	67	90	148	1 300		3 400				
TS 185	117	120	150		1 700		13.9	43	1.98	12.8
	139	135	152							
	55	60	258							
TS 225	69	80	300	2 300	2 190	4 380	15.2	15.2 47.4	3.2	22.4
	137	230	308							

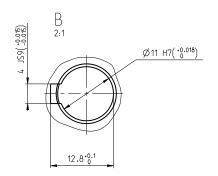

IMPORTANT NOTES:

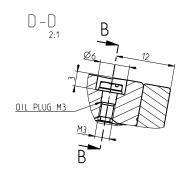

- Load values in the table are valid for the nominal life of L_{10} = 6 000 [Hrs]..
- High precision reduction gears are preferred for intermittent cycles (S3-S8); the output speed in applications is inverted-variable.
- · The continuous mode cycle (S1) is needed to be consulted with the manufacturer.
- If the output speed in application is less than 0,1 rpm please consult with the manufacturer.
- The values in the table refer to the nominal operating temperature.
- Please note the temperature on the gear case that should not exceed significantly 60°C degrees.


The ratios highlighted in bold are recommended by SPINEA as optimal versions in terms of price and delivery.

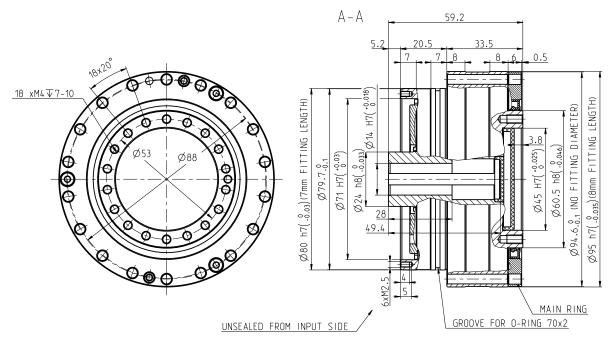
SPINEA

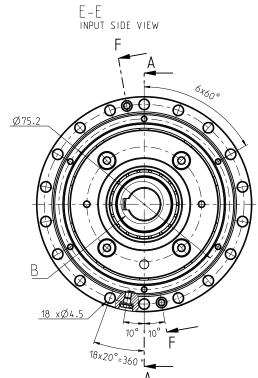


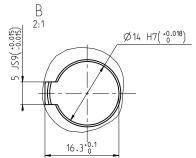

Projection

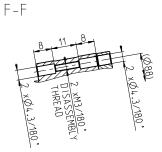

- 1. Main ring must be fixed in operation with 18pcs of screw M3, st 12.9, tilghtening torque 2.2 Nm
- 2. Unsealed space, see assembly manual in catalogue TS G RECOMENDATION FOR SEALING MOTOR FLANGE: Recommended tolerance for fitting diameter (ϕ 56.4 $^{-0.03}_{-0.06}$)

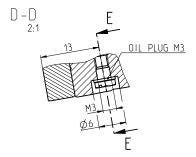
TS 85 - i - G - P11


- 1. Main ring must be fixed in operation with 18pcs of screw M4, st 12.9, tilghtening torque 5 Nm
- 2. Unsealed space, see assembly manual in catalogue TS G RECOMENDATION FOR SEALING MOTOR FLANGE: Recommended tolerance for fitting diameter (ϕ 63 $^{-0.03}_{-0.06}$)




SPINEA

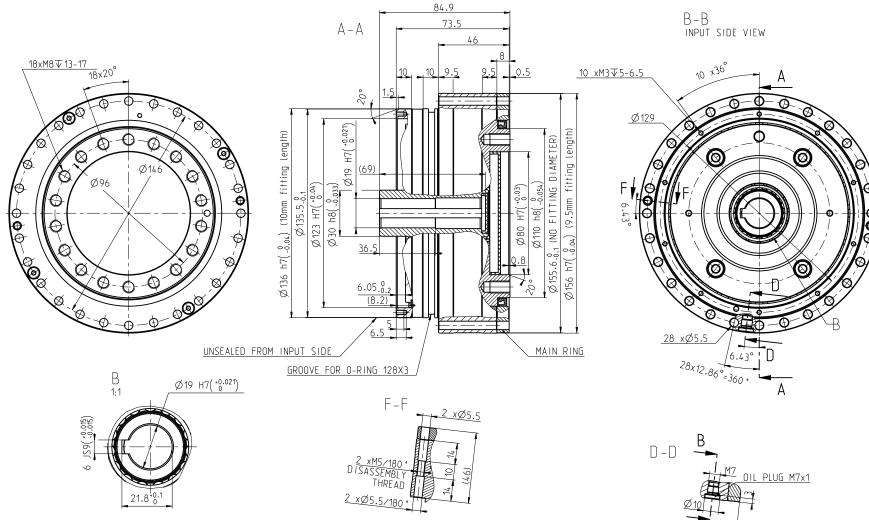

TS 95 - i - G - P14


TS 95 - i - G - P14

- 1. Main ring must be fixed in operation with 18pcs of screw M4, st 12.9, tilghtening torque 5 Nm
- 2. Unsealed space, see assembly manual in catalogue TS G RECOMENDATION FOR SEALING MOTOR FLANGE:
 Recommended tolerance for fitting diameter (\$\phi 71\frac{-0.03}{-0.06}\$)

TS 115 - i - G - P14

^{2.} Unsealed space, see assembly manual in catalogue TS G RECOMENDATION FOR SEALING MOTOR FLANGE: Recommended tolerance for fitting diameter (ϕ 90.2 $^{.0.03}_{-0.06}$)

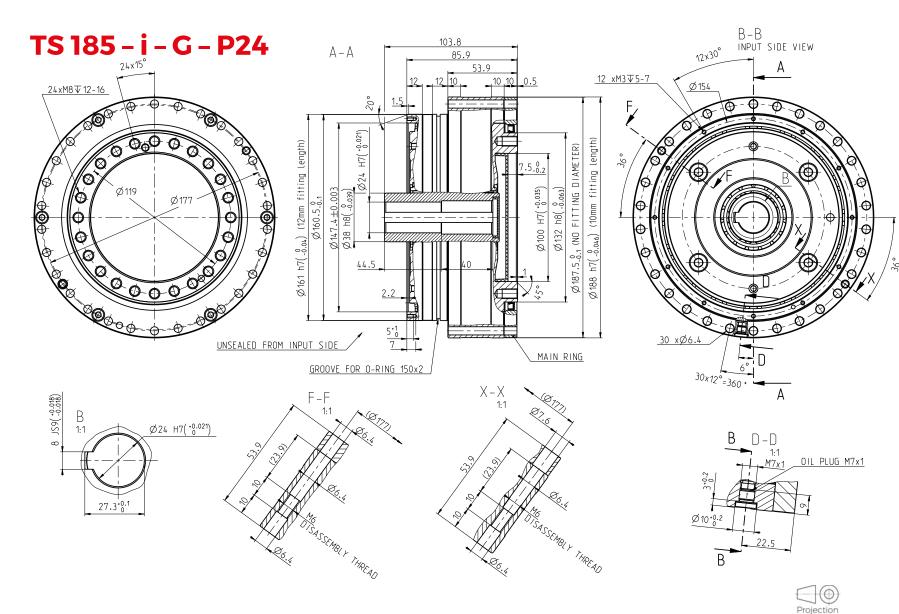


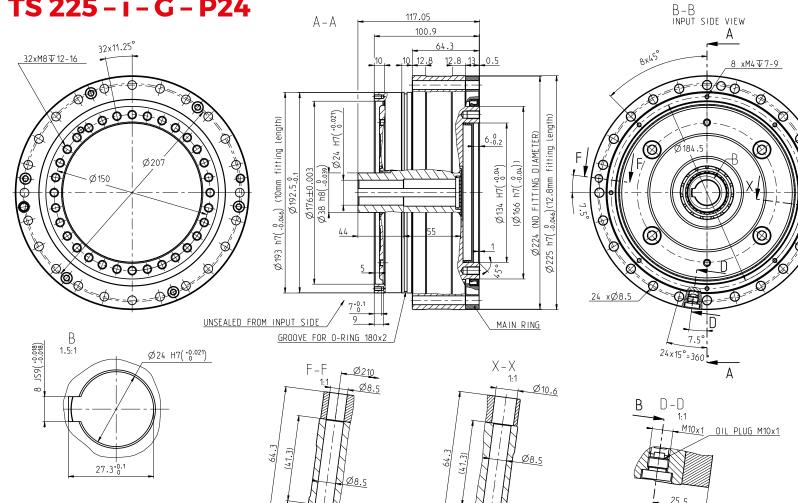
В-В

INPUT SIDE VIEW

TS 155 - i - G - P19

TS 155 - i - G - P19


- $1. \quad \text{Main ring must be fixed in operation with 28pcs of screw M5, st 12.9, tilghtening torque 8 \ Nm} \\$
- 2. Unsealed space, see assembly manual in catalogue TS G RECOMENDATION FOR SEALING MOTOR FLANGE: Recommended tolerance for fitting diameter (\$\phi\$123 \frac{0.05}{0.06}\$)


35

- 1. Main ring must be fixed in operation with 30pcs of screw M6, st 12.9, tilghtening torque 17 Nm
- 2. Unsealed space, see assembly manual in catalogue TS G RECOMENDATION FOR SEALING MOTOR FLANGE: Recommended tolerance for fitting diameter (ϕ 147.4 $^{-0.03}_{-0.06}$)

TS 225 - i - G - P24

-M8 DISASSEMBLY THREAD

2. Unsealed space, see assembly manual in catalogue TS G RECOMENDATION FOR SEALING MOTOR FLANGE: Recommended tolerance for fitting diameter (\$\phi\$176 \frac{-0.03}{-0.06})

2.2 GH SERIES

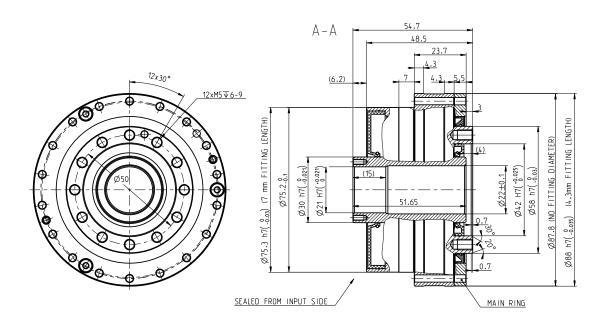
Tab. 2.10	Tab. 2.1d: GH series rating table											
Size	Reduction ratio	Rated output torque	Max. acceleration / deceleration torque	Maximum permissible torque at emergency / E-stop	Rated input speed	Maximum input speed 10)	Lost motion	Hysteresis	Angular transmission error 1) 7)	No-load starting torque (max.) 9)		
	i	T _r [Nm]	T _{acc} [Nm]	T _{em} [Nm]	n _R [rpm]	n _{max} [rpm]	LM [arcmin]	H [arcmin]	ATE [arcsec]	[Nm]		
TS 85	47 85	41	82	205	2 000	3 800 4 500	<1	<1	72	0.6 0.4		
TS 115	55	130	260	650	2 000	2 500	<1	<1	60	0.6		
	123					3 500				0.5		
TS 125	49	180	450	900	2 000	2 400	<1	<1	60	1.5		

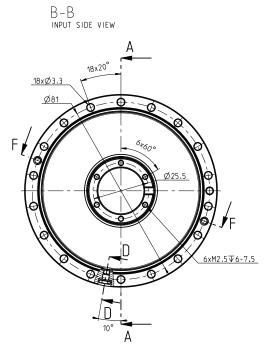
RIGHT TO CHANGE WITHOUT PRIOR NOTICE RESERVED

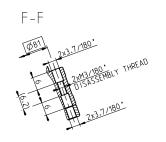
- 1) Mean statistical value. For further information see chapter Torsional stiffness, Tilting stiffness.
- 2) Load at output speed 15 rpm and L_{10} = 12 000 hrs.

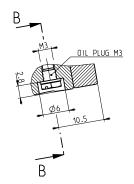
- Moment M_c value for F_a = 0. If F_a ≠ 0, see chapter 3.5.
 Axial force F_{a max} value for M_c = 0. If M_c ≠ 0 see chapter 3.5.
 The parameter depends on the version of the high precision reduction gear.
 The parameter depends on the version of the high precision reduction gear, ratio and lost motion.
- 8) The values of the parameters are informative. The exact value depends on the specific version of the high precision reduction gear.
- 9) Temperatures of the high precision reduction gear lower than 20°C will cause higher no-load starting or back driving torque.
- 10) Instantaneous speed peak that may occur within the working cycle.

Tab. 2.10	Tab. 2.1d: GH series rating table - continued											
Size	Reduction ratio	Max. backdriving torque 9)	Torsional stiffness 50-100% T, 1)	Moment stiffness 1)	Rated moment 2) 3)	Allowable moment	Allowable radial force 2)	Allowable axial force 2) 4)	Input inertia 8)	Weight 8)		
	i	[Nm]	k _t [Nm/arcmin]	M _t [Nm/arcmin]	M _c [Nm]	M _{cmax} [Nm]	F _r [kN]	F _{a max} [kN]	I [10 ⁻⁴ kgm ²]	m [kg]		
TS 85	47 85	25 36	9.5 9.7	85	110	220	2	6	0.29	1.3		
TS 115	55 123	42 91	21 25	200	275	550	4	12.5	0.65	2.9		
TS 125	49 99	40 95	28 29	280	440	880	4.4	13.8	1.06	3.6		

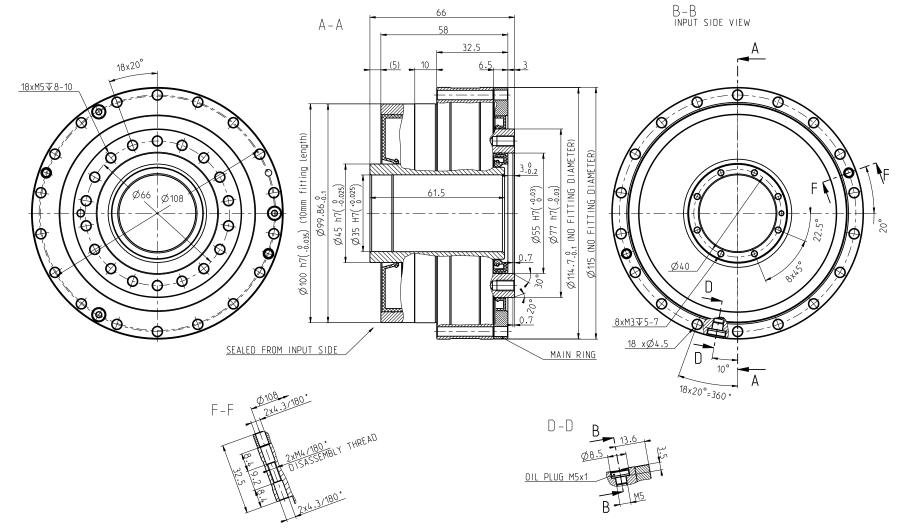

IMPORTANT NOTES:


- Load values in the table are valid for the nominal life of L_{10} = 6 000 [Hrs]..
- · High precision reduction gears are preferred for intermittent cycles (S3-S8): the output speed in applications is inverted-variable.
- The continuous mode cycle (S1) is needed to be consulted with the manufacturer.
- If the output speed in application is less than 0,1 rpm please consult with the manufacturer.
- The values in the table refer to the nominal operating temperature.
- Please note the temperature on the gear case that should not exceed significantly 60°C degrees.

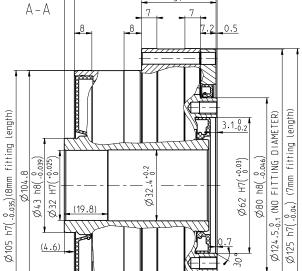

The ratios highlighted in bold are recommended by SPINEA as optimal versions in terms of price and delivery.


TS 85 - i - GH - H25

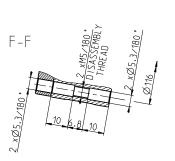
TS 85-i-GH-H25

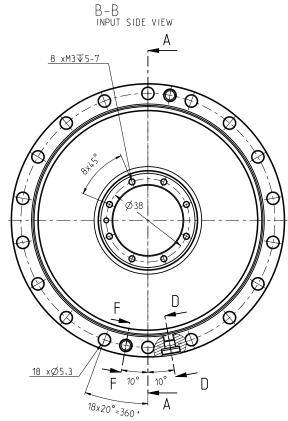


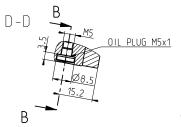
1. Main ring must be fixed in operation with 18pcs of screw M3, st 12.9, tilghtening torque 1.8 Nm


4

1. Main ring must be fixed in operation with 18pcs of screw M3, st 12.9, tilghtening torque $5\ Nm$

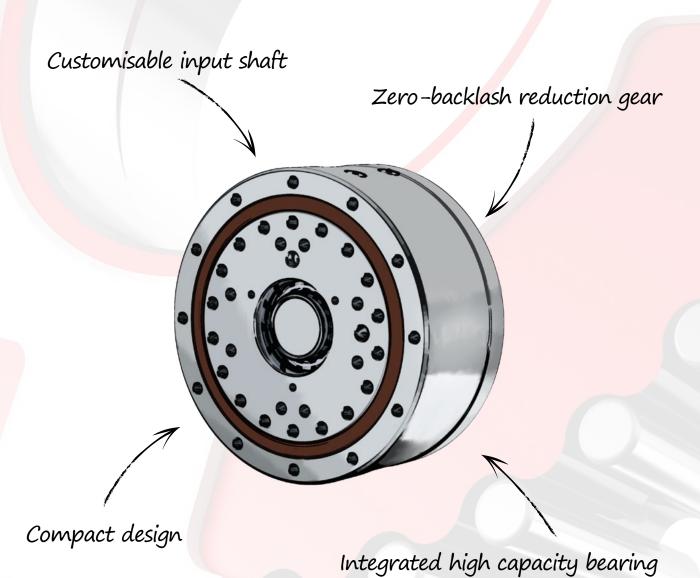

TS 125 - i - GH - H32




MAIN RING

69.8

64.7


1. Main ring must be fixed in operation with 18pcs of screw M5, st 12.9, tilghtening torque 8 Nm

SEALED FROM INPUT SIDE

Tseries

EXCELLENCE IN PERFORMANCE

2.3 T SERIES

Advantages

- zero- backlash reduction gear
- high moment capacity
- excellent positioning accuracy and positioning repeatibility
- high torsional and tilting stiffness
- small dimensions and weight
- high reduction ratios
- long lifetime
- · easy assembly

The **T series** represents a wide range of TwinSpin® high precision reduction gears with a cylindrical shaped case. The T series high precision reduction gears comprise an accurate reduction mechanism and a high-capacity radial and axial cylindrical roller bearings. This design of reduction gears allows the mounting of the load directly on the output flange or the case without the need of additional bearings. The T series high precision reduction gears are characterized by a modular design, which allows the mounting of your desirable type of motor to the reduction gear by means of a motor connection flange. The T series includes TwinSpin® high precision reduction gears that are not completely sealed; an inlet flange and a gasket kit have to be used for the sealing. Upon the customer's request, SPINEA is able to supply a completely sealed reduction gear with a flange according to the customer's motor.

Tab. 2.3a: T series features	
Case	a) TB- threaded holes in the case 1) b) TC- threaded and through holes in case 2
Input flange connection	The shaft sealing / adapter flange is offered in the following versions: a) motor connection flange b) sealed input cover c) without a flange
Input shaft design	The input shaft is offered in the following versions: a) shaft with a keyway b) according to a special request
Installation and operation characteristics	A wider range of modular configurations
) Valid for TS 60, TS 70, TS 80, TS 110, TS 140	2) Valid for TS 170, TS 200, TS 240, TS 300

Та	b. 2.3b: T	series order	ing specifications					
•	TS -	200	- 125 ·	- TC	- P24	+		
	•	•		•	:			
	Name	Size	Ratio	Series version	Shaft version			
	· turre	JIZC	Nutio	Series version	P (DIN 6885) 1)	S ²⁾		
		60	35, 47 , 63	ТВ	6	•		
		70	41, 57, 75	ТВ	11	•		
		80	37, 63 , 85	ТВ	8	•		
		110	33, 67, 89 , 119	ТВ	14	•		
	TS	140	33 , 57, 87, 115 , 139	ТВ	19	•		
		170	33, 59 , 83, 105 , 141	TC	24	•		
		200	63 , 83, 125 , 169	TC	28	•		
		240	37, 87, 121, 153	TC	28	•		

TC

Note: An example of an ordering code of a modified TwinSpin® T series reduction gear with a motor flange:
TS200 - 125 -TC- P24 - M235 - P231. The markings M235 and P231 for a specific modification are defined by the manufacturer.
1) Max. dimension
2) On request

Shaft version

300

63, 125, 191

28

S

Special shaft

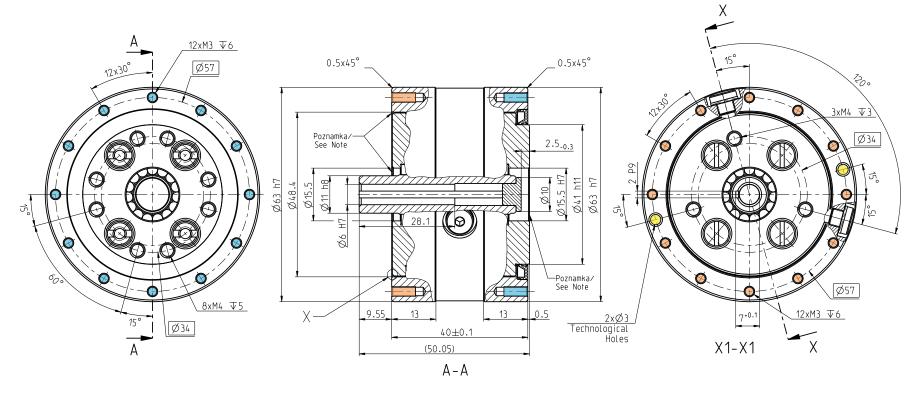
-	Tab. 2.3c: T series rating table										
	Size	Reduction ratio	Rated output torque	Acceleration and braking output torque	Permissible output torque at emergency stop	Rated input speed	Max. allowable input speed 9)	Tilting stiffness 1) 5)	Torsional stiffness 1) 6)	Max. no-load starting torque 8)	Max. back driving torque 8)
		i	T _R [Nm]	T _{max} [Nm]	T _{em} [Nm]	n _R [rpm]	n _{max} [rpm]	M _t [Nm/arcmin]	k _t [Nm/arcmin]	[Nm]	[Nm]
	TS 60	35 47 63	37	74	185	2 000	4 000 5 000	27	3.5	0.16 0.12 0.12	9 9 10
	TS 70	41 57 75	50	100	250	2 000	4 000 5 000	35	7	0.30 0.15 0.14	11 12 13
	TS 80	37 63	78	156	390	2 000	4 000 5 000	62	9	0.35 0.20	14 15
	TS 110	85 33 67 89	122	244	610	2 000	3 500 3 900 4 500	150	22	0.12 0.35 0.35 0.30 0.20	16 24 28 30
	TS 140	119 33 57 87 115	268	670	1 340	2 000	3 000 3 200 4 500	340	54	0.20 0.60 0.40 0.35 0.35	33 40 40 55 65
		139					3 000			0.34	65 75
	TS 170	59 83 105	495	1 237	2 475	2 000	3 500 4 000	705	102	2.00 1.40 1.20 0.40	85 100 125 125
	TS 200	63 83 125 169	890	2 225	4 450	2 000	3 500 4 000 4 000 4 500	1 070	178	1.90 1.80 1.70 0.90	90 120 200 210
	TS 240	37 87 121	1 620	4 050	8 100	1 500	2 000 3 000 3 500 3 700	1 800	340	3.00 1.75 1.70	90 160 170 180
	TS 300	63 125 191	2 940	7 350	14 700	1 500	2 500 3 200 3 500	3 500	680	3.00 2.00 1.50	200 250 300

RIGHT TO CHANGE WITHOUT PRIOR NOTICE RESERVED

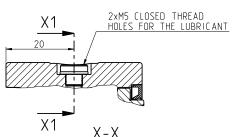
- 1) Mean statistical value. For further information see chapter Torsional stiffness, Tilting stiffness.
- 2) Load at output speed 15 rpm.

- 3) Moment M_{c max} value for F_a=0. If F_a ≠0, see chapter Moment.
 4) Axial force F_a max value for M_c=0. If M_c≠0, see chapter Tilting moment.
 5) The parameter depends on the version of the high precision reduction gear.
- 6) The parameter depends on the version of the high precision reduction gear, ratio and lost motion.
- 7) The values of the parameters are informative. The exact value depends on the specific version of the high precision reductiongear.
- 8) Temperatures of the high precision reduction gear lower than 20°C will cause higher no-load starting or back driving torque.
- 9) Depends on the duty cycle; a higher input speed may still be possible; please consult the manufacturer.

-	Tab. 2.3c: T series rating table - continued											
	Size	Reduction ratio	Max. lost motion	Average angular transmission error 1) 6)	Hysteresis	Max. moment 2) 3)	Rated radial force 2)	Max. axial force 2) 4)	Input inertia 7)	Weight 7)		
		i	LM [arcmin]	ATE [arcsec]	H [arcmin]	M _{c max} [Nm]	F _{rR} [kN]	F _{a max} [kN]	I [10 ⁻⁴ kgm ²]	m [kg]		
	TS 60	35 47 63	<1.5	±36	<1.5	107	2.6	3.7	0.006	0.86		
	TS 70	41 57 75	<1.5	±36	<1.5	142	2.8	4.1	0.061	1.05		
	TS 80	37 63 85	<1.5	±36	<1.0	280	4.8	6.9	0.03	1.64		
	TS 110	33 67 89 119	<1.0	±20	<1.0	740	9.3	13.1	0.16	3.76		
	TS 140	33 57 87 115 139	<1.0	±20	<1.0	1 160	11.5	17	0.67	6.45		
	TS 170	33 59 83 105	<1.0	±20	<1.0	2 430	19.2	27.9	1.15	11.07		
	ΓS 200	63 83 125 169	<1.0	±18	<1.0	3 300	21.1	31.7	2.6	17.23		
	TS 240	37 87 121 153	<1.0	±18	<1.0	5 720	30.8	47.3	3.9	31.15		
	rs 300	63 125 191	<1.0	±18	<1.0	12 000	45.3	68.1	11.2	55.73		

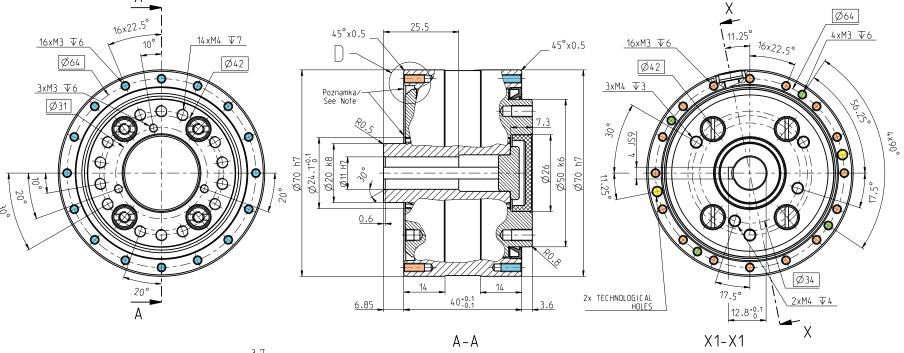

IMPORTANT NOTES:

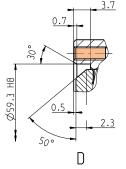
- Instantaneous speed peak that may occur within the working cycle.
- Note please the temperature on the gear case that should not exceed significantly 60°C degrees.
- Load values in the table are valid for the nominal life of L_{10} = 6 000 [Hrs].
- High precision reduction gears are preferred for intermittent cycles (S3-S8): the output speed in applications is inverted-variable.
 The continuous mode cycle (S1) is needed to be consulted with the manufacturer.
- Dimensional pictures of the T series reduction gears are listed in the catalogue without sealing.
- Sealing options are described in the chapter Assembly instructions.
- · Please consult the maximum speed in a duty cycle with the manufacturer.
- The values in the table refer to the nominal operating temperature.

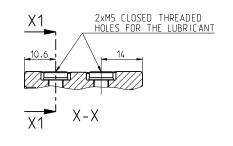

The ratios highlighted in bold are recommended by SPINEA as optimal versions in terms of price and delivery.

TS 60 - i - TB - P6

Drawings

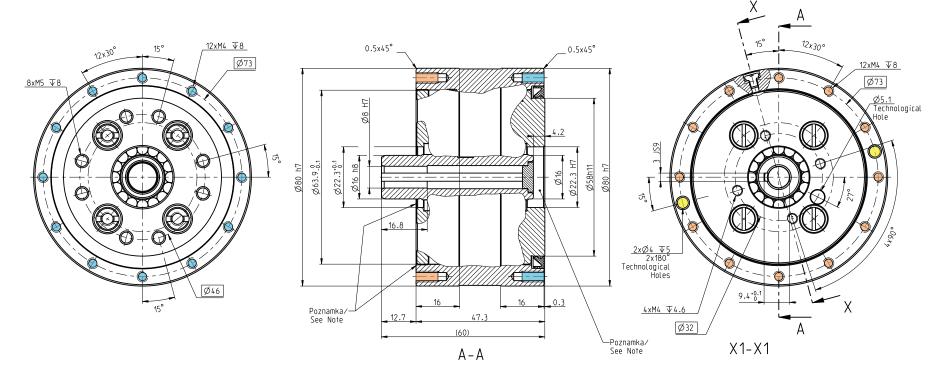

- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

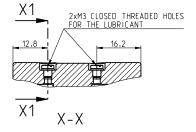


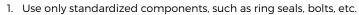


 \Box

<u>A_</u>

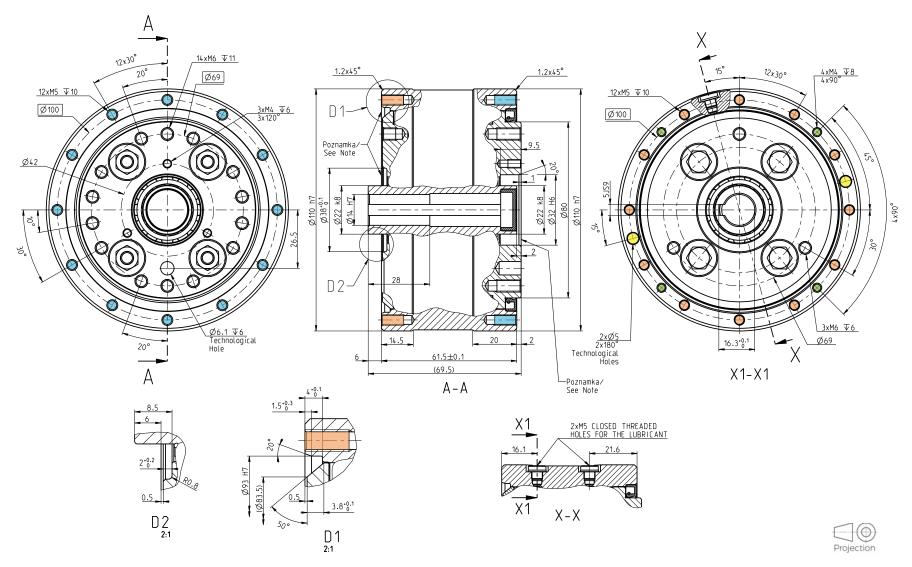


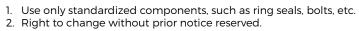



- 1. Use only standardized components, such as ring seals, bolts, etc.
- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

TS 80 - i - TB - P8

- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

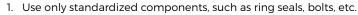



TS 80 - i - TB - P8

Drawings

53

TS 110 - i - TB - P14


3. Unsealed space, see the installation instructions in the TS Catalogue.

TS 140 - i - TB - P19

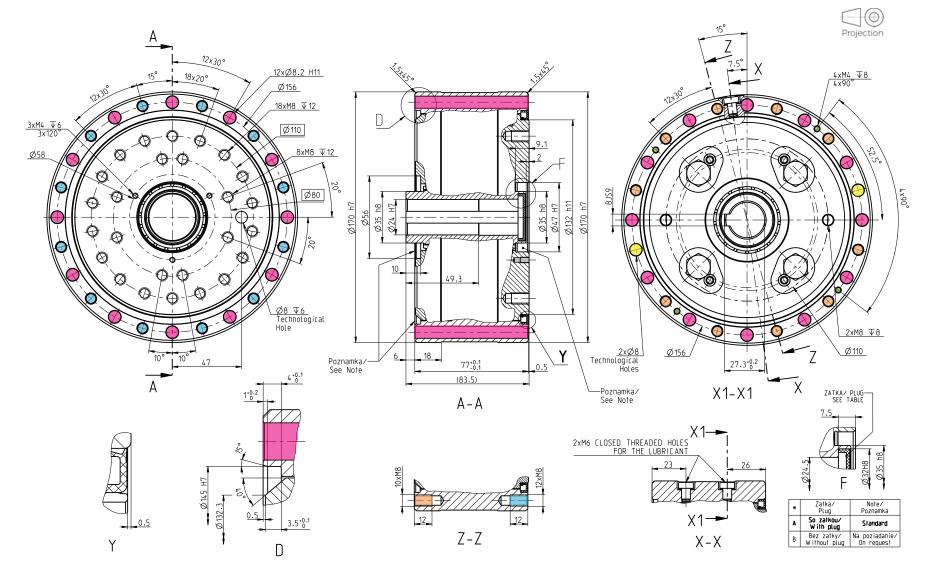
INPUT SIDE VIEW

X - X

D1

2. Right to change without prior notice reserved.

3. Unsealed space, see the installation instructions in the TS Catalogue.

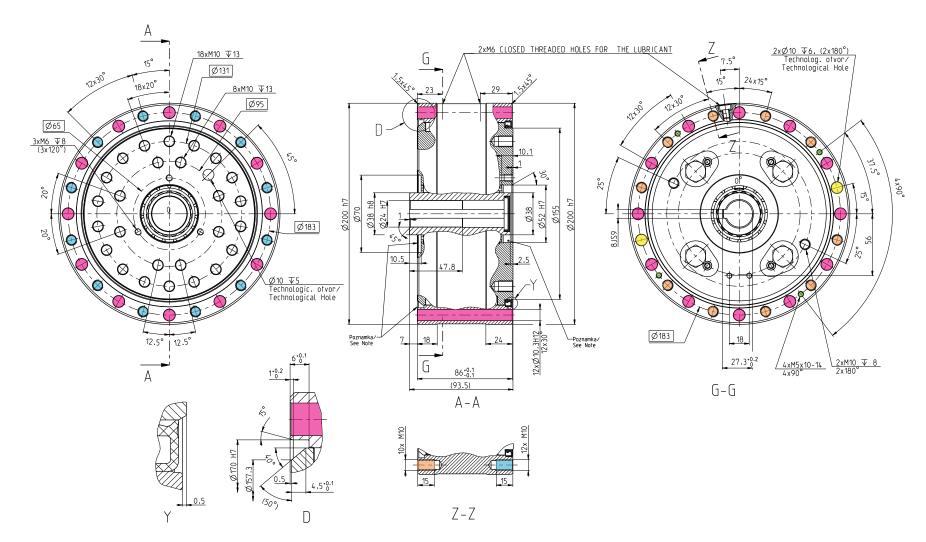

TS 140 - i - TB - P19

Drawings

55

TS 170 - i - TC - P24

INPUT SIDE VIEW

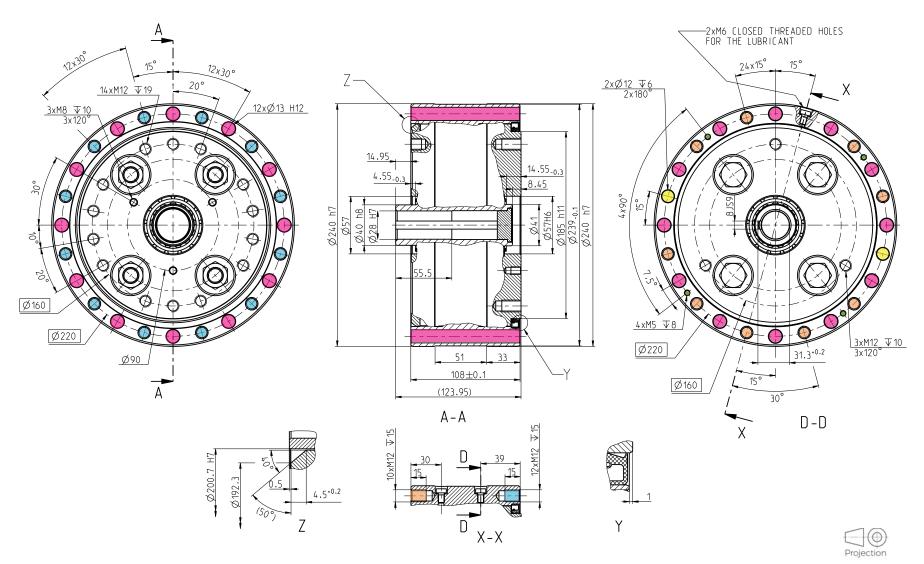


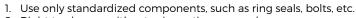

- 1. Use only standardized components, such as ring seals, bolts, etc.
- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

TS 200 - i - TC - P24

INPUT SIDE VIEW

- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

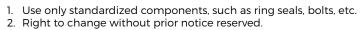




TS 200 - i - TC - P24

Drawings

TS 240 - i - TC - P28


2. Right to change without prior notice reserved.

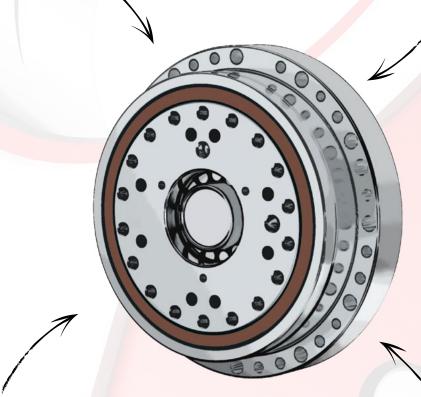
3. Unsealed space, see the installation instructions in the TS Catalogue.

TS 300 - i - TC - P28

INPUT SIDE VIEW

3. Unsealed space, see the installation instructions in the TS Catalogue.

Drawings


TS 300 - i - TC - P28

Robust design and overload capacity

Customisable input shaft

Integrated high capacity bearing

Zero-backlash reduction gear

Eseries

EXCELLENCE IN PRECISION

2.4 E SERIES

Advantages

- zero- backlash reduction gear
- high moment capacity
- excellent positioning accuracy and positioning repeatibility
- high torsional and tilting stiffness
- small dimensions and weight
- high reduction ratios
- high effeciency
- long lifetime
- · easy assembly

The **E series** represents a wide range of TwinSpin® high precision reduction gears with a flange shaped case. The E series high precision reduction gears comprise an accurate reduction mechanism and high-capacity radial and axial cylindrical bearings. This design of reduction gears allows the mounting of the load directly on the output flange or the case without the need of additional bearings. The E series high precision reduction gears are characterized by a modular design, which allows the mounting of your desirable type of motor to the reduction gear by means of a motor connection flange. The E series includes TwinSpin® high precision reduction gears that are not completely sealed; an inlet flange and a gasket kit have to be used for the sealing. Upon the customer's request, SPINEA is able to supply a completely sealed reduction gear with a flange according to the customer's motor.

Tab. 2.4a: E series features	
Case	Threaded and through holes in the case
Input flange connection	The shaft sealing / adapter flange is offered in the following versions: a) motor connection flange b) sealed input cover c) without a flange
Input shaft design	The input shaft is offered in the following versions: a) shaft with a keyway b) according to a special request
Installation and operation characteristics	Special for robotic and general automation

Note: An example of an ordering code of a modified TwinSpin® T series reduction gear with a motor flange: TS200 - 125 -TC- P24 - M235 - P231. The markings M235 and P231 for a specific modification are defined by the manufacturer.

Shaft version

S

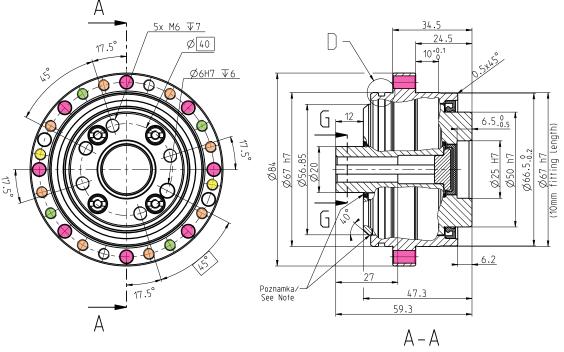
Special shaft

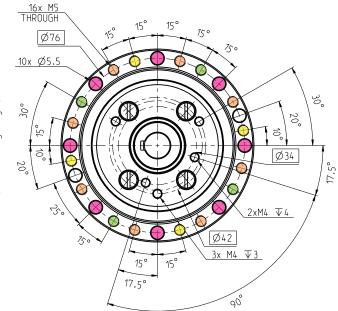
Tab. 2.	4c: Ese	ries rating t	able							
Size	Reduction ratio	Rated output torque	Acceleration and braking output torque	Permissible output torque at emergency stop	Rated input speed	Max. allowable input speed 9)	Tilting stiffness 1) 5)	Torsional stiffness 1) 6)	Max. no-load starting torque 8)	Max. back driving torque 8)
	i	T _R [Nm]	T _{max} [Nm]	T _{em} [Nm]	n _R [rpm]	n _{max} [rpm]	M _t [Nm/arcmin]	k _t [Nm/arcmin]	[Nm]	[Nm]
TS 70	41	50	100	250	2 000	4 000	40	8	0.30	11
	75 37	37			2.000	5 000 4 000			0.14 0.35	13 14
TS 80	85	78	156	390	2 000	5 000	70	10	0.12	16
TS 110	33 67	122	2//	610	2 000	3 500	115	24	0.35	24
15 110	119	IZZ	244	610	2 000	3 900 4 500		24	0.35 0.20	28 33
	33					3 000		62	0.60	40
TS 140	69	268	670	1 340	2 000	4 500	380		0.40	50
	115 33					3 000			0.35 2.00	65 75
	59					3 500			2.00	75 85
TS 170	125	495	1 237	2 475	2 000	3 900	1 100	110	1.20	125
	141					4 000			0.40	125
	49					2 500			2.10	80
TS 200	63 125	890	2 225	4 450	2 000	3 500 4 000	1 300	200	1.90 1.70	90 200
	169					4 500			0.90	210
	55	1.250	7.105	6.250	2.000	2 400	1.000	710	1.80	75
TS 220	125	1 250	3 125	6 250	2 000	3 500	1 900	310	1.40	220

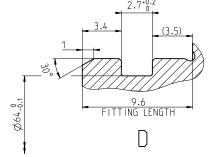
RIGHT TO CHANGE WITHOUT PRIOR NOTICE RESERVED

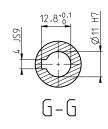
- 1) Mean statistical value. For further information see chapter Torsional stiffness, Tilting stiffness.
- 2) Load at output speed 15 rpm.
- 3) Moment M_{c max} value for F_a=0. If F_a ≠0, see chapter Moment.
 4) Axial force F_a max value for M_c=0. If M_c≠0, see chapter Tilting moment.
- 5) The parameter depends on the version of the high precision reduction gear.
- 6) The parameter depends on the version of the high precision reduction gear, ratio and lost motion.
- 7) The values of the parameters are informative. The exact value depends on the specific version of the high precision reductiongear.
- 8) Temperatures of the high precision reduction gear lower than 20°C will cause higher no-load starting or back driving torque.
- 9) Depends on the duty cycle; a higher input speed may still be possible; please consult the manufacturer.

Tab. 2.4	Tab. 2.4c: E series rating table - continued												
Size	Reduction ratio	Max. lost motion	Average angular transmission error 1) 6)	Hysteresis	Max. moment 2) 3)	Rated radial force 2)	Max. axial force 2) 4)	Input inertia 7)	Weight 7)				
	i	LM [arcmin]	ATE [arcsec]	H [arcmin]	M _{c max} [Nm]	F _{rR} [kN]	F _{a max} [kN]	I [10 ⁻⁴ kgm ²]	m [kg]				
TS 70	41 75	<1.5	±30	<1.5	142	2.8	4.1	0.061	1				
TS 80	37 85	<1.5	±30	<1.0	280	4.8	6.9	0.03	1.6				
TS 110	33 67 119	<1.0	±17	<1.0	740	9.3	13.1	0.16	3.7				
TS 140	33 69 115	<1.0	±17	<1.0	1 160	11.5	17	0.67	5.8				
TS 170	33 59 125 141	<1.0	±17	<1.0	2 430	19.2	27.9	1.15	10.8				
TS 200	49 63 125 169	<1.0	±15	<1.0	3 300	21.1	31.7	2.6	17.2				
TS 220	55 125	<1.0	±15	<1.0	4 400	22.5	35.5	4.8	22.4				

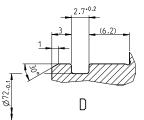

IMPORTANT NOTES:


- Instantaneous speed peak that may occur within the working cycle.
- Note please the temperature on the gear case that should not exceed significantly 60°C degrees.
- Load values in the table are valid for the nominal life of L_{10} = 6 000 [Hrs].
- High precision reduction gears are preferred for intermittent cycles (\$3-\$8); the output speed in applications is inverted-variable.
 The continuous mode cycle (\$1) is needed to be consulted with the manufacturer.
- Dimensional pictures of the E series reduction gears are listed in the catalogue without sealing.
- Sealing options are described in the chapter Assembly instructions.
- Please consult the maximum speed in a duty cycle with the manufacturer.
- · The values in the table refer to the nominal operating temperature.

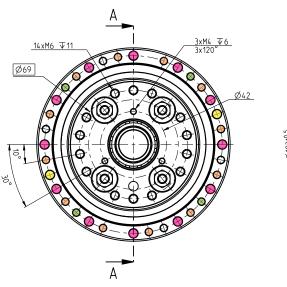

The ratios highlighted in bold are recommended by SPINEA as optimal versions in terms of price and delivery.

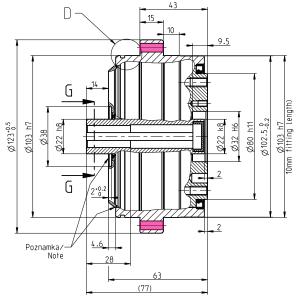

SPINEA

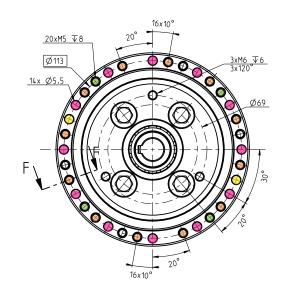
TS 70-i-E-P11

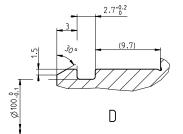


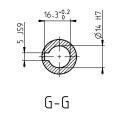
- Use only standardized components, such as ring seals, bolts, etc.
 Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

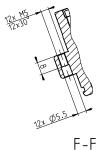

- 1. Use only standardized components, such as ring seals, bolts, etc.
- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

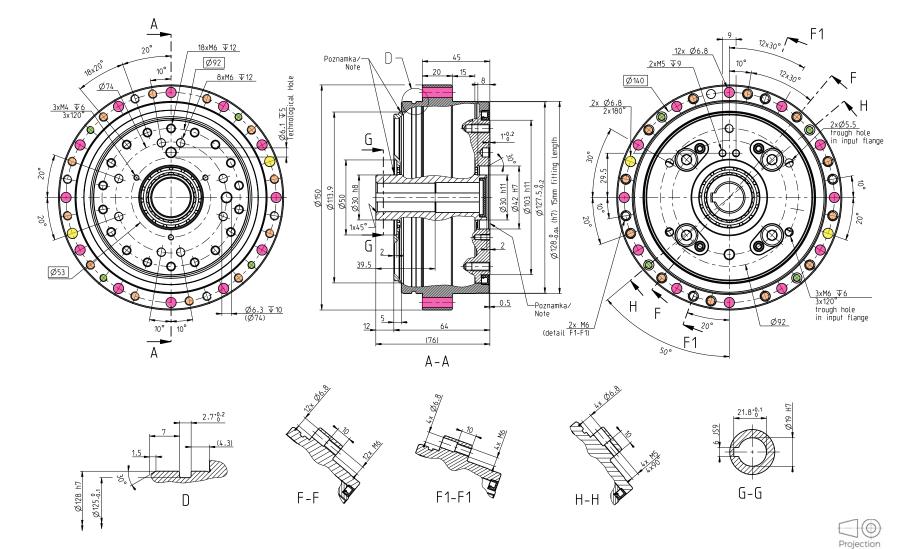



SPINEA

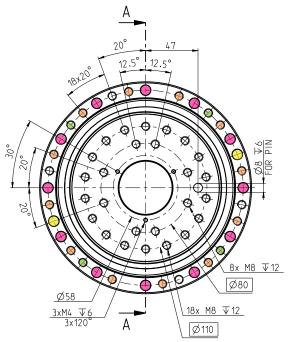

TS 110-i-E-P14

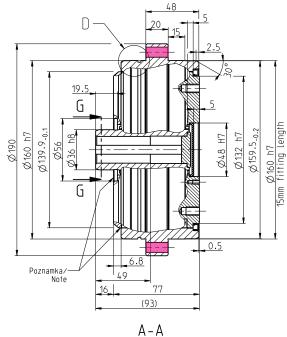

TS 110-i-E-P14

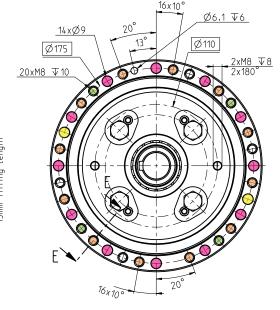


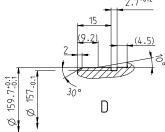

A-A

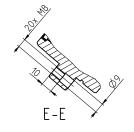
- Use only standardized components, such as ring seals, bolts, etc.
 Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

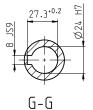

- 1. Use only standardized components, such as ring seals, bolts, etc.
- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.



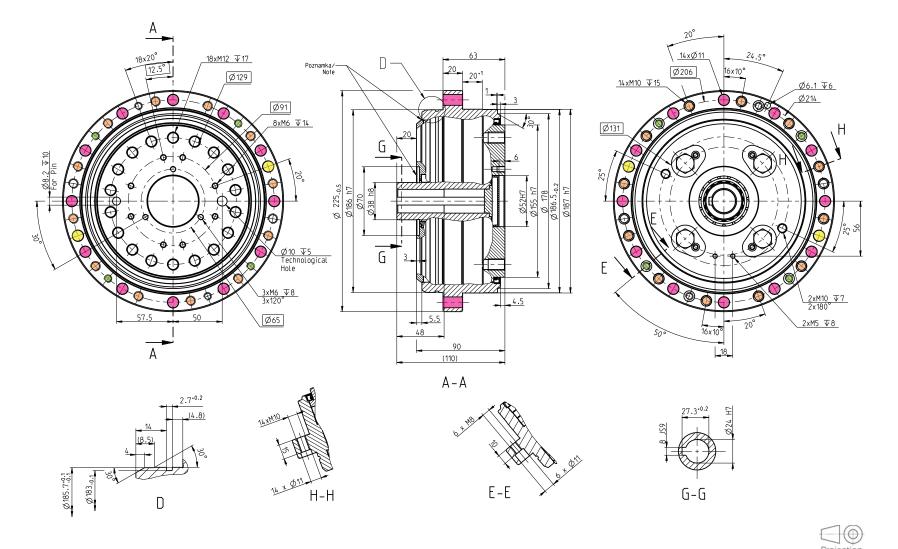

SPINEA


TS 170 - i - E - P 24


TS 170 - i - E - P 24



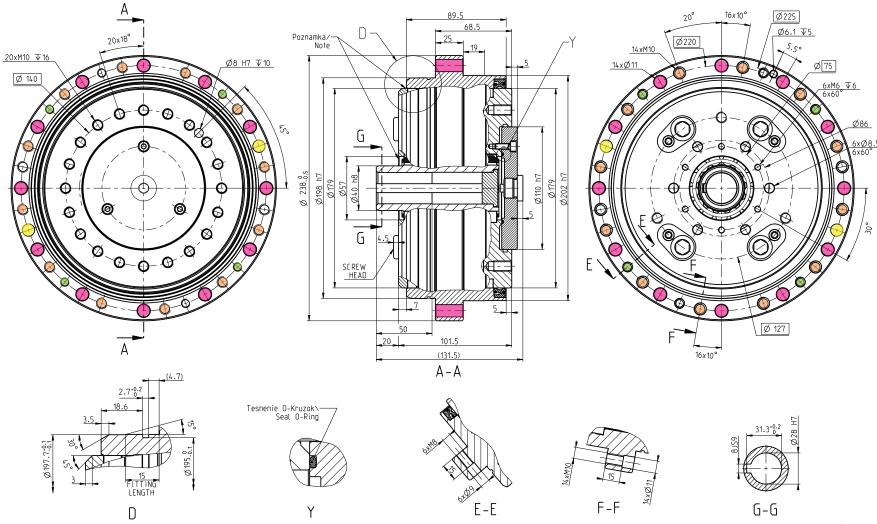
- Use only standardized components, such as ring seals, bolts, etc.
 Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

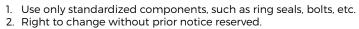


7

TS 200 - i - E - P 24

INPUT SIDE VIEW

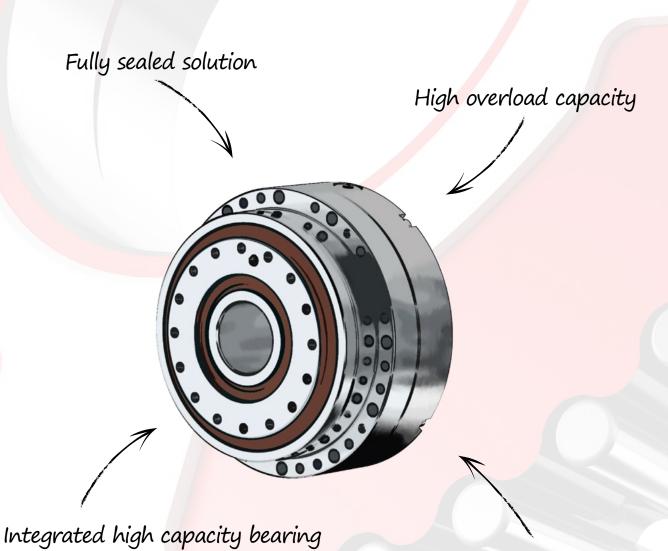

- 1. Use only standardized components, such as ring seals, bolts, etc.
- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.



TS 220 - i -

E-P28

TS 220 - i - E - P 28


3. Unsealed space, see the installation instructions in the TS Catalogue.

Zero-backlash reduction gear

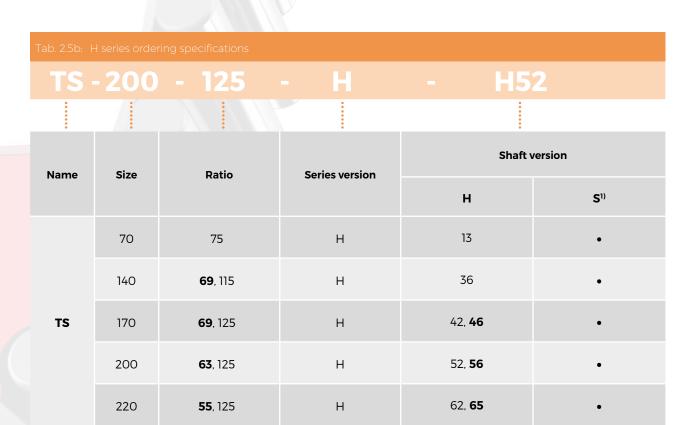
Hseries

EXCELLENCE IN POSITIONING

2.5 H SERIES

Advantages

- large input shaft hole diameter
- fully sealed
- zero-backlash reduction gears
- high moment capacity
- excellent positioning accuracy and positioning repeatibility
- high torsional and tilting stiffness
- small dimensions and weight
- high reduction ratios
- · high effeciency
- · long lifetime
- · easy assembly


The **H series** represents TwinSpin® high precision reduction gears with through-holes in the shafts, also known as the hollow-shaft version. Cables, tubes with compressed air, drive shafts etc. can be led through the hole in the shaft of the gear. The H series is completely sealed and filled with grease for lifetime. The H series high precision reduction gears comprise an accurate reduction mechanism and high-capacity radial and axial cylindrical bearings. This design of the reduction gears allows the mounting of the load directly on the output flange or case without a need of additional bearings.

Tab. 2.5a: H series features	
Case	Threaded and through holes in the case
Input flange connection	Completely sealed reduction gear
Input shaft design*	The input shaft is offered in the following versions: a) hollow shaft b) according to a special request
Installation and operation characteristics	Hollow-shaft reduction gears. A large hole in the input shaft allows cables, tubes or an additional shaft to pass through the reduction gear. Suitable for applications where the rotation of the input shaft is achieved by using a tooth belt or a similar arrangement.

*On request

Note: An example of an ordering code of a modified H series TwinSpin® reduction gear with a motor flange: TS200 - 125 - H- H56 - M235 - P231. The markings M235 and P231 for a specific modification are defined by the manufacturer. 1) On request

Shaft version

S Special shaft

Tab												
<u>4</u> 2.	0.75	Reduction ratio	Shaft inside diameter	Rated output torque	Acceleration and braking output torque	Permissible output torque at emergency stop	Rated input speed	Max. allowable input speed 9)	Tilting stiffness 1) 5)	Torsional stiffness 1) 6)	Max. no-load starting torque 8)	Max. back driving torque 8)
		i	d	T _R [Nm]	T _{max} [Nm]	T _{em} [Nm]	n _R [rpm]	n _{max} [rpm]	M _t [Nm/arcmin]	k _t [Nm/arcmin]	[Nm]	[Nm]
TS	70	75	13	50	100	250	2 000	5 500	35	7.5	0.14	13
TS 1	40	69 115	36	200	500	1 000	2 000	3 500 4 500	340	55	1.6 1.5	110 130
		69	42 46		1 050 825	2 100 1 650		3 200			2.5	180
TS 1	70	125	42 46	420	1 050 825	2 100 1 650	2 000	3 700	1 100	110	2.2	240
		63	52 56		1 780 1 100	3 560 2 200		2 700			4	250
TS 2	00	125	52 56	712	1 780 1 100	3 560 2 200	560 2 000	3 700	2 000	200	3	300
		55	62 65		2 750 2 000	5 500 4 000		2 400			5	170
TS 2	20	125	62 65	1 100	2 750 2 000	5 500 4 000	2 000	3 400	2 400	290	3	350

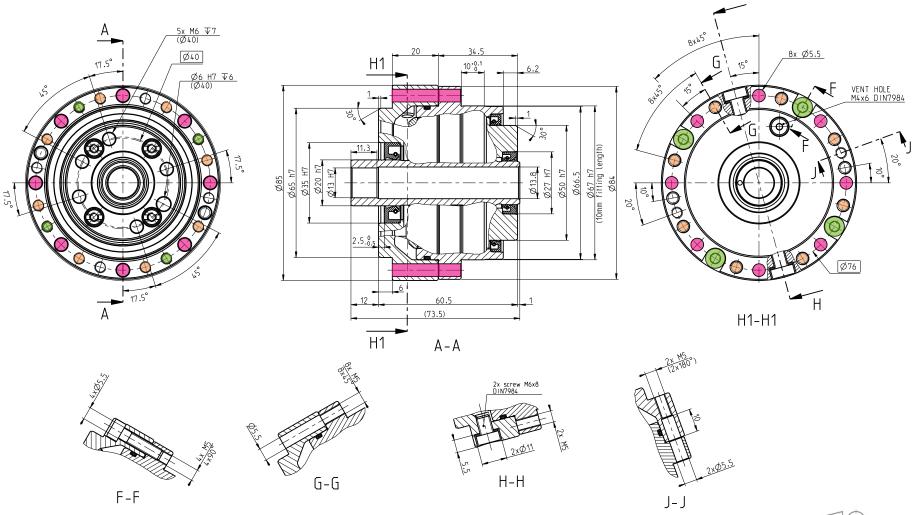
RIGHT TO CHANGE WITHOUT PRIOR NOTICE RESERVED

- 1) Mean statistical value. For further information see chapter Torsional stiffness, Tilting stiffness.
- 2) Load at output speed 15 rpm.

- 3) Moment M_{c max} value for F_a=0. If F_a ≠0, see chapter Moment.
 4) Axial force F_a max value for M_c=0. If M_c≠0, see chapter Tilting moment.
 5) The parameter depends on the version of the high precision reduction gear.
- 6) The parameter depends on the version of the high precision reduction gear, ratio and lost motion.
- 7) The values of the parameters are informative. The exact value depends on the specific version of the high precision reductiongear.
- 8) Temperatures of the high precision reduction gear lower than 20°C will cause higher no-load starting or back driving torque.
- 9) Depends on the duty cycle; a higher input speed may still be possible; please consult the manufacturer.

Tab. 2.5c: H series rating table - continued										
Size	Reduction ratio	Max. lost motion	Average angular transmission error 1) 6)	Hysteresis	Max. moment 2) 3)	Rated radial force 2)	Max. axial force 2) 4)	Input inertia 7)	Weight 7)	
	i	LM [arcmin]	ATE [arcsec]	H [arcmin]	M _{c max} [Nm]	F _{rR} [kN]	F _{a max} [kN]	I [10 ⁻⁴ kgm ²]	m [kg]	
TS 70	75	<1.5	±30	<1.5	142	2.8	4.1	0.061	1	
TS 140	69 115	<1.5	±17	<1.0	1 160	11.5	17	3.6	7.5	
TS 170	69 125	<1.0	±17	<1.0	2 000	19.2	27.9	4.8	11.6	
TS 200	69 125	<1.0	±15	<1.0	3 300	21.5	31.7	18.2	20	
TS 220	55	<1.0	±15	<1.0	4 400	22.5	35.5	31	26	

IMPORTANT NOTES:

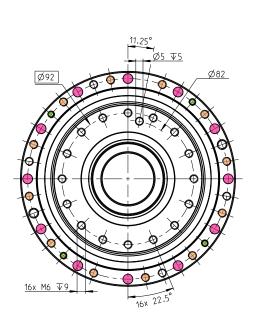

- · Instantaneous speed peak that may occur within the working cycle.
- Note please the temperature on the gear case that should not exceed significantly 60°C degrees.
- Load values in the table are valid for the nominal life of L_{10} = 6 000 [Hrs].
- High precision reduction gears are preferred for intermittent cycles (S3-S8): the output speed in applications is inverted-variable.
 The continuous mode cycle (S1) is needed to be consulted with the manufacturer.
- Please consult the maximum speed in a duty cycle with the manufacturer.
- The values in the table refer to the nominal operating temperature.

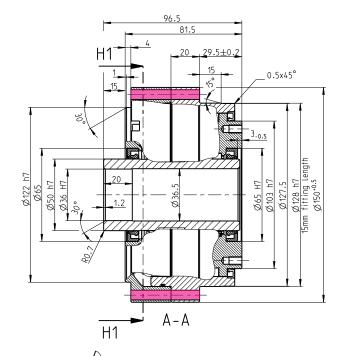
The ratios highlighted in bold are recommended by SPINEA as optimal versions in terms of price and delivery.

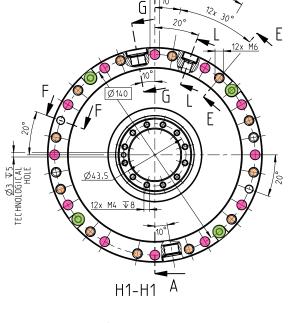
Drawings TS 70 - i - H - H 13

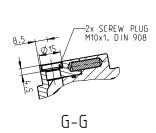
TS 70 - i - H - H 13

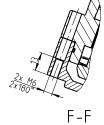
INPUT SIDE VIEW

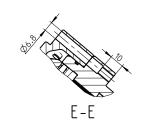

- 1. Use only standardized components, such as ring seals, bolts, etc.
- Right to change without prior notice reserved.

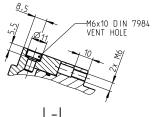


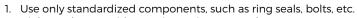


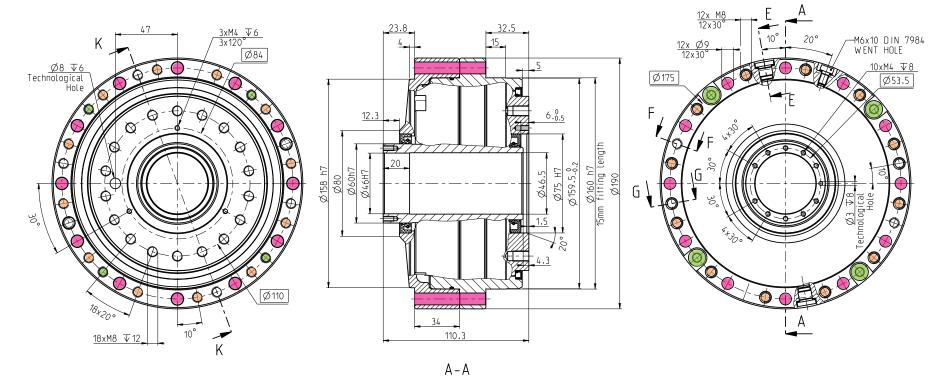

TS 140 - i - H- H 36

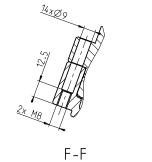

INPUT SIDE VIEW

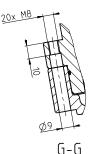




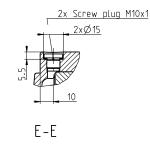


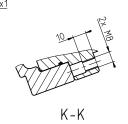


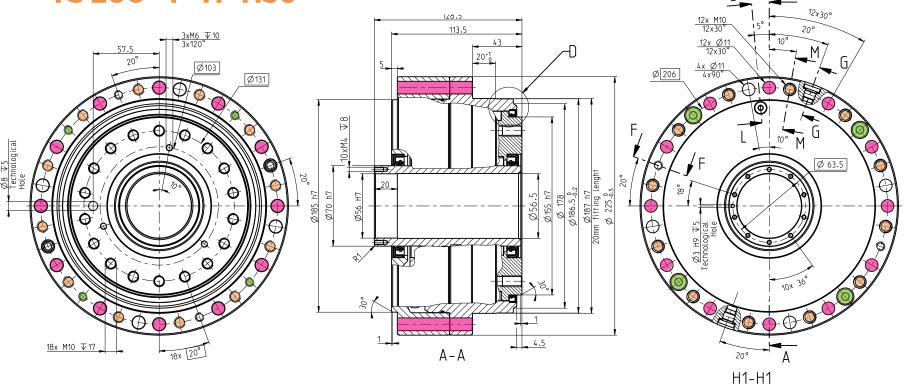


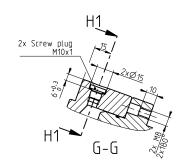


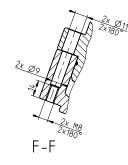
TS 170 - i -H - H46

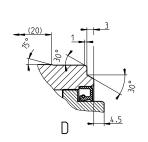

Drawings

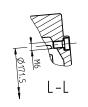


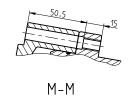


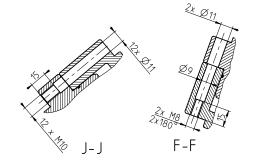




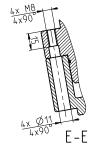

TwinSpin⁴

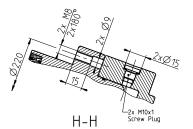

TS 200 - i - H- H56





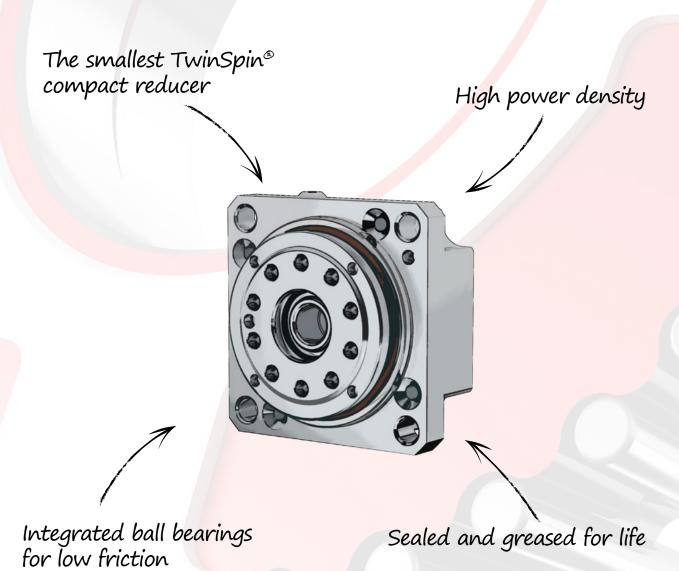
INPUT SIDE VIEW




Drawings

A-A

20x 18°


1. Use only standardized components, such as ring seals, bolts, etc.

TS 220 - i - H - H 65

Mseries

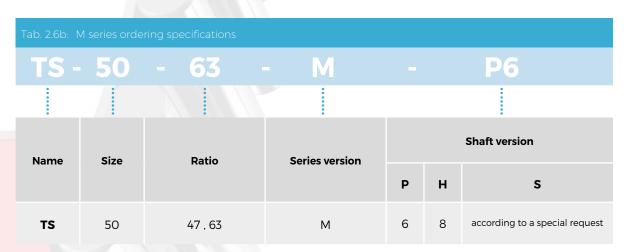
EXCELLENCE IN MOTION

2.6 M SERIES

Advantages

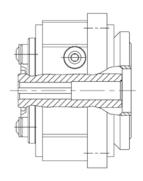
- small dimensions and compact design
- series sealed by 2RS ball bearings
- simple installation
- zero- backlash reduction gear
- very low mass
- very high power density
- output deep groove ball bearings with very low friction

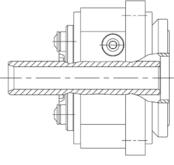
- high performance of the reduction gear
 - high precision
 - high torsional stiffness
 - high linearity of torsional stiffness characteristics
- very low friction and high efficiency


The **M series** represents TwinSpin® high precision reduction gears of mini sizes. The M series is filled with grease for lifetime. The sealing of the M series reduction gears is secured by sealed (2RS) ball bearings, which are used as output bearings of the reduction gear, and they are also used for the housing of the input shaft of the reduction gear (slight leakage of the lubricant is allowed). Upon the customer's request, SPINEA is able to supply a completely sealed reduction gear. This design of the reduction gears allows the mounting of the load directly on the output flange or case without a need of additional bearings.

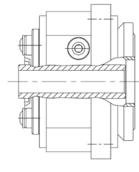
Tab. 2.6a: TwinSpin® M series mini reduction gear versions							
Shape of the case	a) The mounting part of the case is located on the output side of the TwinSpin® high precision reduction gear. b) The mounting part of the case is located on the input side of the TwinSpin® high precision reduction gear.						
lput shaft connection	a) Direct connection of shafts without couplings. The motor shaft is aligned with the hole with a keyway.b) Indirect connection of shafts with rigid or flexible couplingsc) Shafts are aligned according to the customer's requirements.						

The M series high precision reduction gears are manufactured in several modifications according to the specification of the shaft and the case; see Tab. 26a.




Note: An example of an ordering code of a modified TwinSpin® reduction gear with with a motor flange:

TS 50 - 63 - M - P6- M235 - P231. The markings M235 and P231 for a specific modification are defined by the manufacturer.


Shaft version

a) P- Shaft with keyway

b) H - Hollow shaft

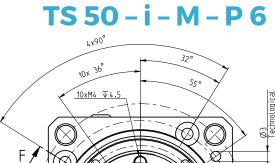
c) S- Special shaft

Tab. 2.6c: M series rating table										
Size	Reduction ratio	Rated output torque	Acceleration and braking output torque	Permissible output torque at emergency stop	Rated input speed	Rated output speed	Max. continuous input speed	Max. allowable input speed 1) 6)	Tilting stiffness 1)	Torsional stiffness 1)
	i	T _R [Nm]	T _{max} [Nm]	T _{em} [Nm]	n _R [rpm]	n _{Rout} [rpm]	n _{cmax} [rpm]	n _{max} [rpm]	M _t [Nm/arcmin]	k _t [Nm/arcmin]
TS 50	47 63	18	36	90	2 000	32	3 000	5 000	4	2.5

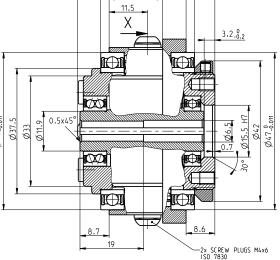
RIGHT TO CHANGE WITHOUT PRIOR NOTICE RESERVED

- 1) Mean statistical value

- Mean statistical value
 Load at output speed n_{Rout} = n_R / i. For TS 50 M at 32 [rpm]
 Moment M_{c max} at F_a=0. If F_a ≠ 0 see par. 3.5.1
 Radial force F_{r max} for F_a=0. If F_a ≠ 0 see par. 3.5.1
 Axial force F_{a max} for F_r=0. M_c=0. If M_c ≠ 0, see par. 3.5.1
 At 50% n_{cmax} (max input speed in cycle)
 Applies to the standard version of the high precision reduction gear with the shaft connected by a keyway
- 8) a2 is the distance of the radial force centre from the front of the output flange [m]

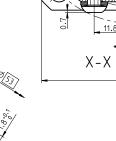


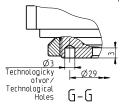



Tab. 2.6c: M	Tab. 2.6c: M series rating table - continued								
Average no-load starting torque 1)	Average back driving torque 1)	Max. lost motion	Hysteresis	Max. peak moment 2) 3)	Max radial force 2) 4) 8)	Max. axial force 2) 5)	Input inertia 7)	Weight 7)	
[cNm]	[Nm]	LM [arcmin]	H [arcmin]	M _{c max} [Nm]	F _{rR} [kN]	F _{a max} [kN]	I [10 ⁻⁴ kgm ²]	m [kg]	
4	3 2	<1.5	<1.5	44	a2=0 1,44 a2>0 0,044/(a2+0,0305)	1.9	0.007	0.47	

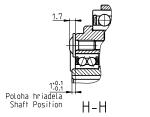
Note: Load values in Tab. 2.6c are valid for the nominal life of $\rm L_{10}$ = 6 000 [Hrs].

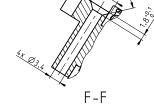
SPINEA

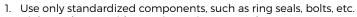


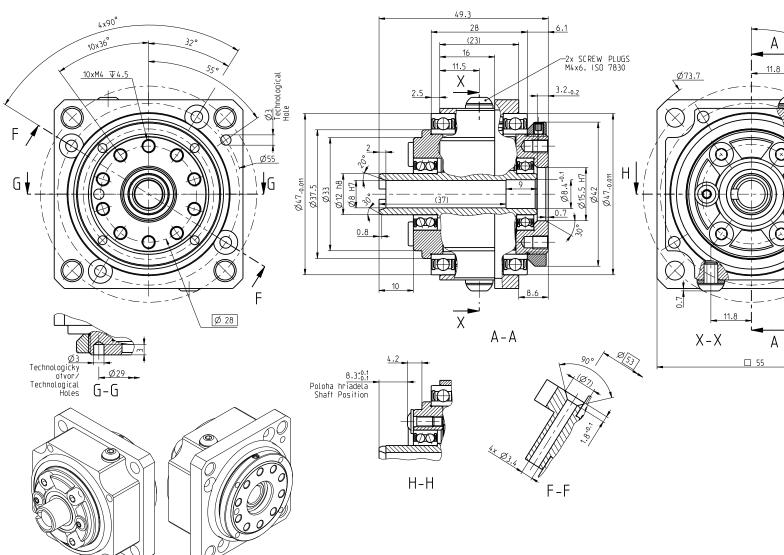


A-A


(28)



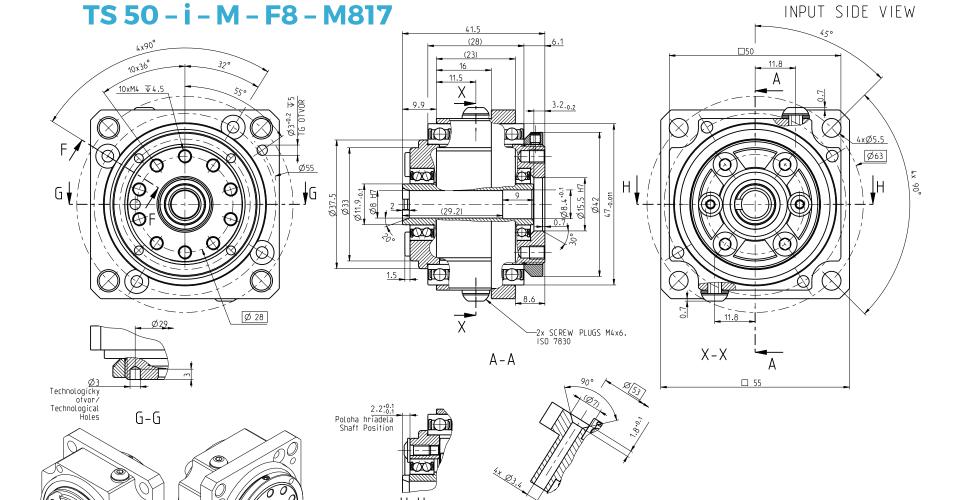


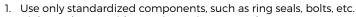

- Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.



TS 50 - i - M - H8 - M826

M826 INPUT SIDE VIEW




- 2. Right to change without prior notice reserved.
- 3. Unsealed space, see the installation instructions in the TS Catalogue.

4xØ5.5 Ø63 SPINEA

Right to change without prior notice reserved.

3. Unsealed space, see the installation instructions in the TS Catalogue.

3. Performance characteristics

3.1 **G, GH, T, E, H, M** series service life calculation

The nominal service life of the TwinSpin® reduction gear is determined by the service life of the bearings on the input shaft. This nominal service life is limited by the material fatigue of the bearings. It does not take into account other factors that may be a limit to the practical service life, such as insufficient lubrication, contamination or overload. The nominal service life is only a statistical value.

It denotes a time in operation under rated conditions during which 10% of a large number of reduction gears get damaged due to material fatigue. For further explanations or special calculations for your specific application please contact the Sales Department or your local sales representative.

The service life for a given speed and load values can be calculated as follows:

$$L_{h}=k.\frac{n_{R}}{n_{a}}.\left(\frac{T_{R}}{T_{a}}\right)^{\frac{10}{3}}[\text{hrs}]$$

k - 6,000 hour service life [Hrs]

L_h - required service life [hrs]

T_a - average output torque [Nm]

n - average input speed [rpm]

T_p - ratad output torque [Nm]

n_p - rated input speed [rpm]

3.2 M series maximum continuous input speed (n_{c max})

The maximum continuous input speed is the speed limit in the continuous operation mode S1. If higher speeds are required, please contact the sales department.

3.3 G, GH, T, E, H, M series maximum acceleration and braking torques

Due to inertial loads, the torque applied during acceleration and braking is higher than the rated value. The maximum allowable torque when the reduction gear accelerates or decelerates is shown in Tab. 2.3c, Tab. 2.4c, Tab. 2.5c, and Tab. 2.6c.

3.4 **G, GH, T, E, H, M** series maximum emergency stop torque (T_{em})

An emergency stop and the induced shock load may result in torque values higher than the nominal value. The maximum allowable torque value is provided in Tab. 2.3c, Tab. 2.4c, Tab. 2.5c, and Tab. 2.6c. It should be noted that its occurrence is accidental and rare, and it is not part of a regular duty cycle in any way.

3.5 Allowable radial-axial load and moment load on the output flange of the **G, GH, T, E, H** series

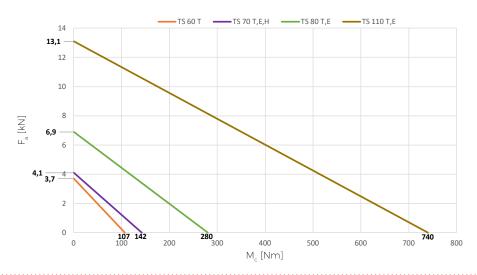
Radial and axial loads act independently thanks to the integrated radial-axial output bearings. The allowed radial load (F_r) is provided in the rating table in Chapter 2. The moment (Fig. 3.6a and Fig. 3.6b) is expressed as follows:

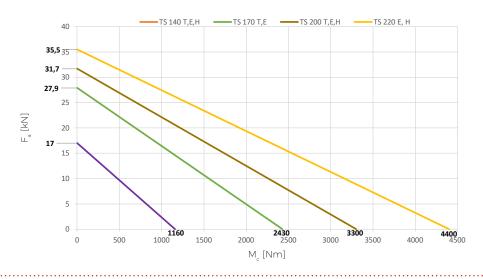
$$M_c = F_r \cdot a + F_a \cdot b$$

a - radial force F arm [m]

b - axial force Faarm [m]

M - moment [Nm]


F_r - radial load [N]


F_a - axial load [N]

The allowable load for the moment (M_c) and the axial force (F_a) is shown in Fig. 3.5. A point with coordinates (M_c , F_a) must lie in the area under the line of the selected reduction gear. For example, in the case of TS 170 T, E, at an output speed of 15 rpm, L_{10} = 6 000 hrs and moment Mc = 1 500 Nm, the maximum axial force may be 10.7 kN (see Fig. 3.5). The allowable radial and axial loads determine the allowable dynamic load that can be applied on a reduction gear. For more detailed calculations for specific conditions please contact the sales department or your local sales representative.

.....

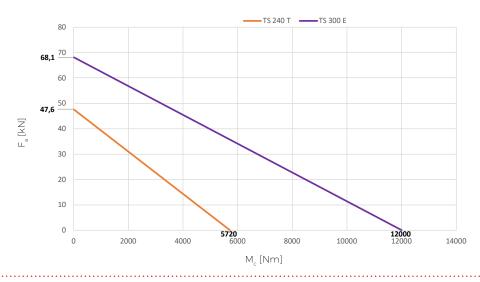
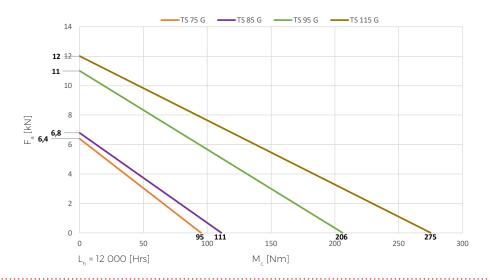
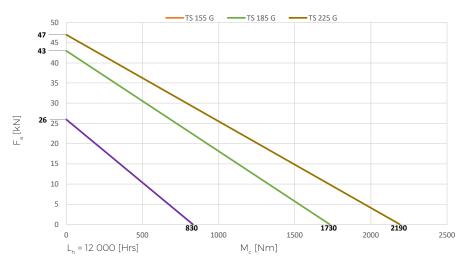




Fig. 3.5: Relation between the moment and the axial force

3.5.1 Allowable radial-axial load and moment on the output flange of the M series

The output flange of the TwinSpin® M series reduction gear is able to transmit external loads from the radial force F_r , axial force Fa and moment M_c . The moment is expressed as follows

$$M_c = F_r \cdot a + F_a \cdot b$$

M₂ - moment [Nm]

F, - radial load [N]

F - axial load [N]

b - arm of force F_a [m]

al - perpendicular distance between the centre of the output bearings and the face of the output flange [m]

a2 - perpendicular distance between the vector of force F, and the face of the output flange [m]

a3 - perpendicular distance between the centre of the output bearing A and the face of the output flange [m]

a = a1+a2 - arm of force F, in relation to the centre of the output bearings [m]

A, B - identification of the bearings

A - bearing of the output side of the reduction gear

B - bearing of the input side of the reduction gear

RAx, RAy, RBx, RBy - reaction identificiation on x-axis (axial direction) and y-axis (radial direction) in bearings A,B

L1 - distance between the centres of the output bearings [m]

L2 = a2+a3 - perpendicular distance between the vector of force F, and the centre of the output bearing A [m]

The moment applied to the most loaded bearing A according to Fig. 3.5.1 is expressed as follows:

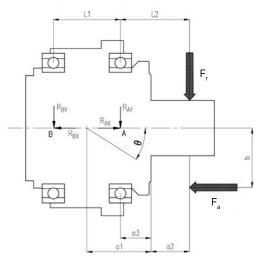


Fig. 3.5.1: Loading of the M series reduction gear and the angle of tilt

$$M_c = F_r (a2 + a3) + F_a b = F_r \cdot L2 + F_a b$$

When checking external loads of the TwinSpin® M series reduction gear, proceed as follows:

- a) Allowable axial load $F_a \le F_{a \text{ max}}$ according to the Tab. 3.5.4
- b) Allowable moment $M_c \le M_{c \text{ max}}$ according to the Tab. 3.5.5
- c) Allowable radial load $F_r \le F_{r,max}$ according to the Tab. 3.5.6
- d) Equivalent load $PrA \le P_{r \text{ max}}$ according to the Tab. 3.5.3

Tab. 3.5.1: Distances a1, a3 and L1 from Fig. 3.5.1					
TS series M	TS 50				
Distance al [m]	0,02				
Distance a3 [m]	0,0095				
Distance L1 [m]	0,021				

3.5.2 M series output bearings load capacity

The standard version of the TwinSpin® M series reduction gear has two sealed (2RS) deep groove ball bearings as output bearings. Tab. 3.5.2a describes the basic dynamic and static load capacity of the two bearings and Table 3.5.2b is used for the calculation of the equivalent loading of one output deep groove ball bearing of the reduction gear.

Tab. 3.5.2a: Capacity of M series deep groove ball bearings					
TwinSpin® M series reduction gear	TS 50				
Basic dynamic load capacity $C_{r}[kN]$	4.75				
Basic static load capacity C _o [kN]	3.85				

Tab. 3.5.2b: Calculation of the equivalent load of one M series deep groove ball bearing									
		D /O		Rx/Ry <= e		Ry/R	y > e		
	Dynamic equivalent radial load	Rx/C _o	е	X	Υ	X	Υ		
Equivalent Radial Load	Pr = X. Ry + Y. Rx Values X and Y are in the table on the right	0.014 0.028 0.056	0.19 0.22 0.26				2.30 1.99 1.71		
	Static equivalent radial load = 0.6 Ry + 0.5 Rx	0.084 0.11 0.17	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31		
	if volue Por < Ry, Por = Ry	0.28 0.42 0.56	0.38 0.42 0.44				1.15 1.04 1.00		

Where Rx, Ry are reactions in bearings A, B, i.e. identified as RAx, RAy, RBx, RBy according to Fig. 3.5.1.

3.5.3 M series output bearings allowable load

The tables of nominal values Tab. 3.5.4, Tab. 3.5.5, and Tab. 3.5.6, show the allowable radial force $F_{r,max}$, allowable axial load $F_{a,max}$ and allowable moment $M_{c,max}$ applied to the output flange of the TwinSpin® M series reduction gear according to Fig. 3.5.1 This is the load at which the gear achieves the nominal service life of its output bearing L_{10} = 6 000 Hrs at the nominal output speed n_{rout} . The equivalent radial load can be determined from the formula:

$$L_{\text{10}} = \frac{10^6}{60.\,\text{n}}. \left(\frac{C_{\text{r}}}{P_{\text{r}}}\right)^3 \qquad P_{\text{r}} = \frac{C_{\text{r}}}{(L_{\text{10}}.\,60.\,\text{n}.\,10^{-6})^{\frac{1}{3}}}$$

L₁₀ - service life [hour]

n - operational speed [rpm]

C_r - basic dynamic load of the bearing [N]

P - equivalent radial load [N]

Tab. 3.5.3: Equivalent maximum radial load of the M series output bearing					
M series high precision reduction gear $(L_{10} = k, n = n_{rout})$	TS 50				
Ratio i	63				
Equivalent max. radial load of the output bearing $P_{rmax}\left[N\right]$	2 100				

3.5.4 $\,$ M series allowable axial load $\,$ F $_{a \, max}$

Tab. 3.5.4 shows the maximum allowable axial load $F_{a \text{ max}}$ where the arm of the force is b = 0 (Fig. 3.5.1) and $F_r = 0$ and $M_c = 0$.

Tab. 3.5.4: Allowable axial load F _{a max} on the M series output bearing					
M series high precision reduction gear $(L_{10} = k, n = n_{rout})$	TS 50				
Ratio i	63				
Allowable axial load $F_{a \text{ max}}$ [N] ($F_r = 0$, $M_c = 0$, $b = 0$)	1 900				

3.5.5 M series allowable moment M_{c max}

When only an external moment M_c is applied to the output flange or the TwinSpin® M series reduction gear, the following applies to the maximum value $M_{c max}$ of the moment in Tab. 3.5.5:

$$M_{c max} = P_{r max} \cdot L_1$$

Tab. 3.5.5: Allowable moment at the output flange of the M series high precis	on reduction gear
M series high precision reduction gear $(L_{10} = k, n = n_{rout})$	TS 50
Allowable moment M _{c max} [Nm] (F _a = 0)	44

3.5.6 M series allowable radial load $F_{r,max}$

The allowable radial load values F_{rmax} when F_{a} = 0 (Tab. 3.5.6) are calculated from the formula:

$$F_{r\,max} = \frac{M_{c\,max}}{(a_2 + a_3 + L_1)}$$

Tab. 3.5.6: Allowable radial load on the M series output flange									
M series high precision reduction gear $(L_{10} = k, n = n_{rout})$	TS 50								
Allowable radial load F _{r max} [N]	44/(a2 + 0.0305)								
Allowable radial load for a2 = 0 , $F_{r \text{ max}}[N]$	1 440 N								

Where a2 is the perpendicular distance between the vector of force F, and the face of the output flange [m] Fig. 3.5.1

3.5.7 $\stackrel{\text{M}}{\text{M}}$ series output flange allowable load when applying both $F_{_{r}}$ radial force and $F_{_{a}}$ axial force

When both a radial force F_r and an axial force F_a are applied to the output flange, then, according to Tab. 3.5.2b, the equivalent load is calculated as follows:

$$PrA = X \cdot \left(\frac{F_a \cdot b + F_r(a_2 + a_3)}{L_1} + F_r\right) + Y \cdot F_a$$

$$PrA = X \cdot \left(\frac{M_c}{L_1} + F_r\right) + Y \cdot F_a$$

Where the coefficients X and Y are calculated according to Tab. 3.5.3 as follows:

$$\frac{RAx}{C_{or}} = \frac{F_a}{C_{or}} \rightarrow X, Y$$

$$\frac{RA_x}{RA_y} = \frac{F_a}{\frac{F_a.b + F_r(a_2 + a_3)}{L_1} + F_r} \rightarrow X, Y$$

$$\frac{RA_x}{RA_y} = \frac{F_a}{\frac{M_c}{L_1} + F_r} \rightarrow X, Y$$

3.6 G, GH, T, E, H, M series output flange tilting stiffness and deflection angle

The TwinSpin® reduction gears are able to withstand external forces and moment loads by means of integrated output bearings. When the output flange is loaded, the flange deflection angle is proportional to the applied moment. The tilting stiffness (M_{t}) is a moment at which the output flange deflects by an angle Θ = 1′. The M_{t} values are specified in the rating table in Chapter 2. The tilting angle of the output flange (Fig. 3.6a, Fig. 3.6b and Fig. 3.5.1) can be determined as follows:

$$\Theta = \frac{F_r. a + F_a. b}{M_t}$$

 Θ – output flange tilting angle [arc min]

M. - tilting stiffness [Nm/arcmin]

F, - radial road [N]

F - axial road [N]

a - arm of force F_r [m] a = al + a2 al = L / 2

b - arm of force F_a [m]

The output flange is fixed from both sides.

The radial load is 2xF,.

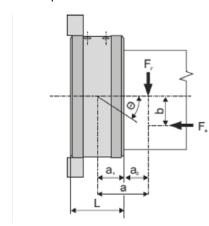


Fig. 3.6a: Load and moment on the T, E, H, M series output flange

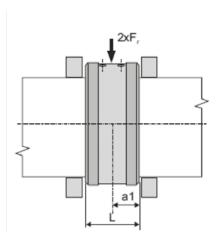


Fig. 3.6b: Load and moment on the T, E, H, M series output flange

3.7 **G, GH, T, E, H, M** series lost motion, hysteresis and torsional stiffness

If the input shaft and the case are fixed and a torque is applied to the output flange, then the load diagram has the shape of a hysteresis curve (Fig. 3.7a).

The transmission mechanism of TwinSpin® reduction gears is manufactured and assembled in such a way that there is zero backlash in the gear. Hysteresis H expresses the amount of friction in the reduction gear. Hysteresis loss occurs as a result of the internal friction in the reduction gear. The hysteresis of the torsional turn H [arcmin] is measured as an angular difference determined by the intersections of the hysteresis curve with the turn axis at point $T_p = 0$ [Nm].

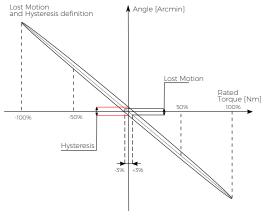


Fig. 3.7a: T, E, H, M series hysteresis curve and the definition of stiffness

Torsional stiffness $(k_{\scriptscriptstyle t})$ is defined as follows:

$$k_t = \frac{d}{c}$$

Torsional stiffness and lost motion values are provided in the rating table in Chapter 2. The torsional stiffness values are statistical values for a particular reduction ratio. High precision reduction gears with hysteresis and lost motion of ≤ 0.6 [arcmin] can be supplied on request.

The hysteresis characteristic of TS 140-139-TB with lost motion under 0.5 [arcmin] is illustrated in Fig. 3.7b.

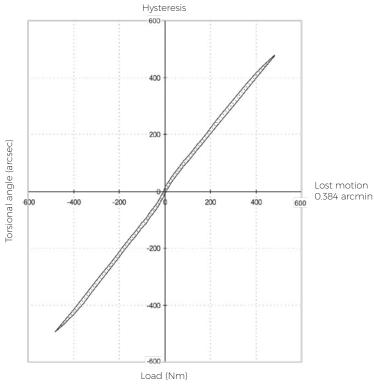


Fig. 3.7b: Hysteresis curve of TS 140-139-TB

3.8 **G, GH, T, E, H, M** series torsional vibrations

Torsional vibration is indicated in the peripheral direction of an inertia load driven by the reduction gear. Low vibration is extremely important for applications where high precision contouring is required. For example, a tool centre point of a robot end point has to follow a desired trajectory as precisely as possible. If robot joints vibrate, the trajectory tracking is poor. Added axes of a machine tool is another application example where very smooth running of a high precision reduction gear is required.

An accelerometer installed on a defined lever arm registers the vibration of an inertia load. A reference measurement of peripheral acceleration and position deviation is shown in Fig. 3.8. TwinSpin® runs extremely smoothly. For an input speed higher than 500 rpm the peripheral deviation is about 10 µm. The value of the external diameter amplitude LFD/LFA stabilizes when the input speed reaches and exceeds 900 rpm. For that reason the maximum input speed 900 rpm was chosen for the evaluation of torsional vibration.

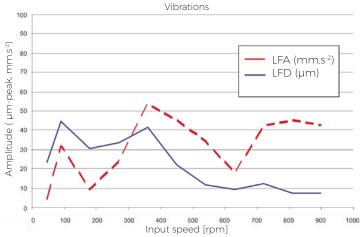


Fig. 3.8: Vibrations of TS 170-105-TC

3.9 **G, GH, T, E, H, M** series angular transmission accuracy

The angular transmission error is the difference between the theoretical output angle of rotation and the actual angle of rotation. The angular transmission error of the TwinSpin® high precision reduction gear is typically 1 arcmin or less. Fig. 3.9 shows an example of the angular transmission error measured on a specific TwinSpin® reduction gear TS 140-139-TB. The influence of the load on the angular transmission accuracy is relatively low.

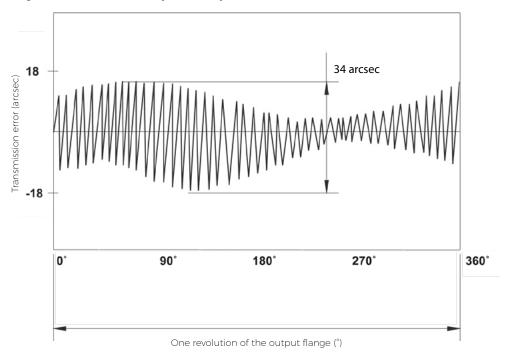


Fig. 3.9: Angular transmission error measurement

Measuring conditions Model: TS 140-139-TB Load conditions: no load

3.10 **G, GH, T, E, H, M** series no-load starting torque

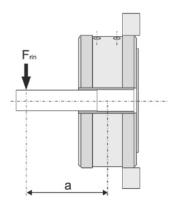
The no-load starting torque is a quasi-static torque required to start rotation of the input shaft, if no load is applied to the output flange. The rating tables provide values for the starting torque, statistically evaluated from current production tests. Attributes in the table are specified only for a temperature of 20 °C. For a temperature of the reduction gear lower than 20 °C there will be a higher no load starting torque. For a specific application please consult with the manufacturer.

3.11 **G, GH, T, E, H, M** series back-driving torque

The back-driving torque is the torque applied to the output flange that is required to start rotation of the input shaft under no-load. Chapter 2 provides values for back-driving torque, statistically evaluated from the current production tests.

3.12 **G, GH, T, E, H, M** series maximum moment of the input shaft $(M_{c,in})$

Since the input shaft is supported on both sides by bearings, radial loads $F_{r in}$ may be applied. The moment on the input shaft resulting from a radial load (Fig. 3.12a T, E, H series Fig. 3.12b M series) can be calculated as follows:


 $\begin{array}{ll} M_{c \text{ in}} - \text{allowable moments [Nm]} \\ M_{c \text{ in}} = F_{r \text{ in}} \cdot a & - \text{valid for T. E. H series} \\ M_{c \text{ in}} = F_{r \text{ in}} \cdot a_{\text{in}} \cdot F_{a \text{ in}} \cdot b_{\text{in}} & - \text{valid for M series} \\ a & - \text{load force arm [m]} \\ F_{r \text{ in}} & - \text{radial load [N]} \end{array}$

Allowable moments M_{cin} on the input shaft are provided in Tab. 3.12.

Tab. 3.12: Allowable moment M _{c in} on the input shaft under the conditions specified in the parameter tables of Chapter 2															
Size	TS 50	TS 60	TS 70	TS 80	TS 110	TS 140	TS 140	TS 170	TS 170	TS 200	TS 200	TS 220	TS 220	TS 240	TS 300
M _{c in} [Nm]	M series 3	T series 6	T. E. H series 11	T, E series 16	T. E series 35	T, E series 68	H series 25	T, E, H series 126	H series 60	T, E series 157	H series 95	E series 210	H series 127	T series 260	T series 378

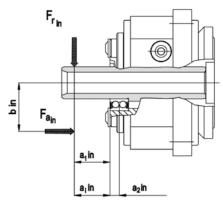
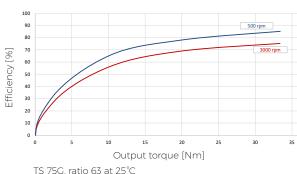
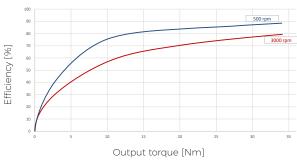
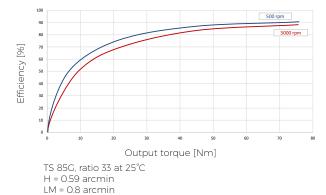
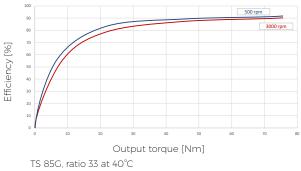



Fig. 3.12a: Radial load of the T, E, H series input shaft


Fig. 3.12b: Radial load of the input shaft M series

3.13 **G** series efficiency chart


The efficiency of the TwinSpin® reduction gears depends on the input speed, output load, viscosity of lubricant, operational temperature and Lost Motion.



TS 75G, ratio 63 at 25°C H = 0.39 arcmin LM = 0.86 arcmin

TS 75G, ratio 63 at 40°C H = 0.39 arcmin LM = 0.86 arcmin

TS 85G, ratio 33 at 40°C H = 0.59 arcmin LM = 0.8 arcmin

Fig. 3.13: Efficiency charts

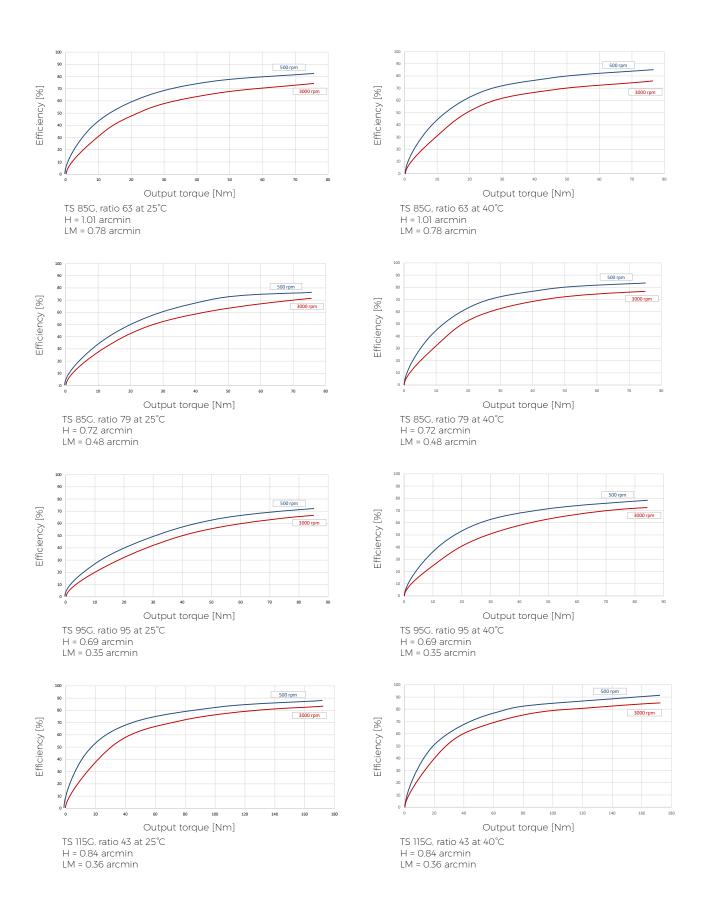


Fig. 3.13: Efficiency charts

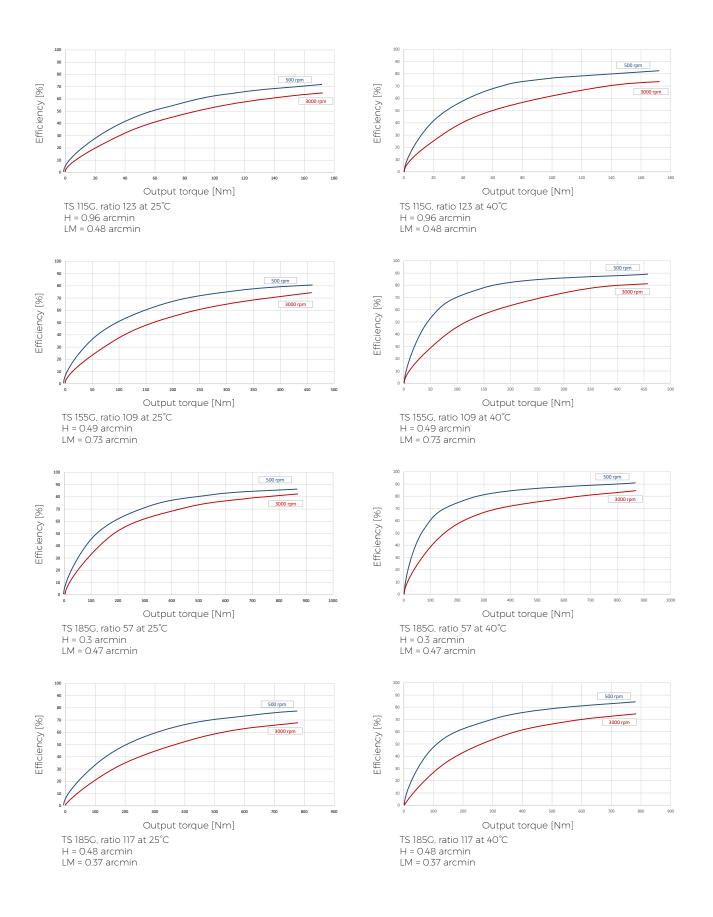


Fig. 3.13: Efficiency charts

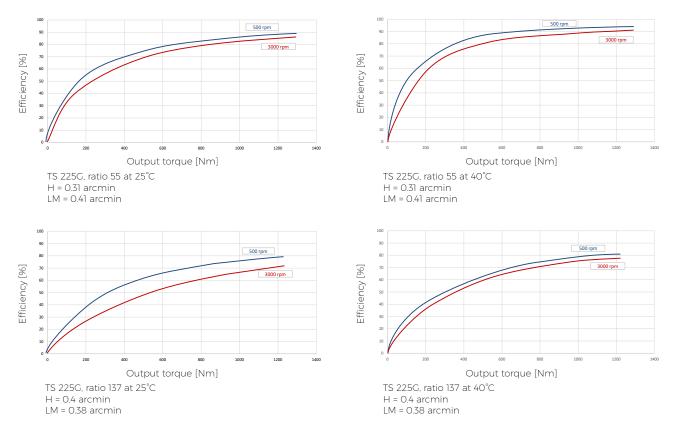


Fig. 3.13: Efficiency charts

3.14 **GH** series efficiency chart

The efficiency of the TwinSpin® reduction gears depends on the input speed, output load, viscosity of lubricant, operational temperature and Lost Motion.

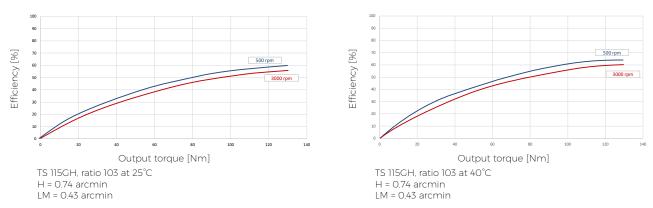


Fig. 3.14: Efficiency charts

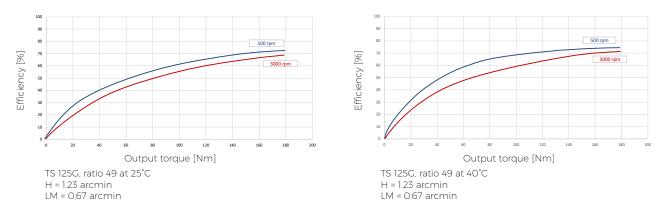


Fig. 3.14: Efficiency charts

3.15 **G** series no-load running torque

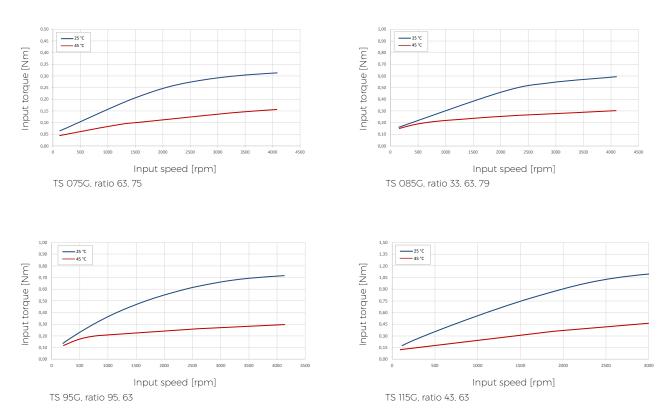
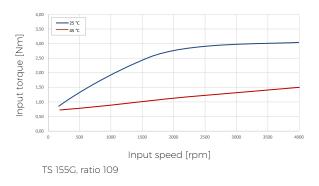
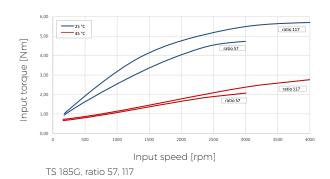




Fig. 3.15: No-load running torque charts

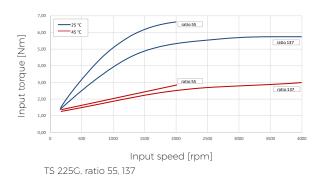


Fig. 3.15: No-load running torque charts

3.16 **GH** series no-load running torque

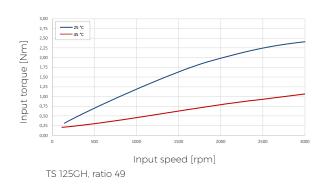


Fig. 3.16: No-load running torque charts

3.17 **T, E, H, M** series efficiency chart

The efficiency of the TwinSpin® reduction gears depends on the input speed, output load, viscosity of lubricant, operational temperature and Lost Motion.

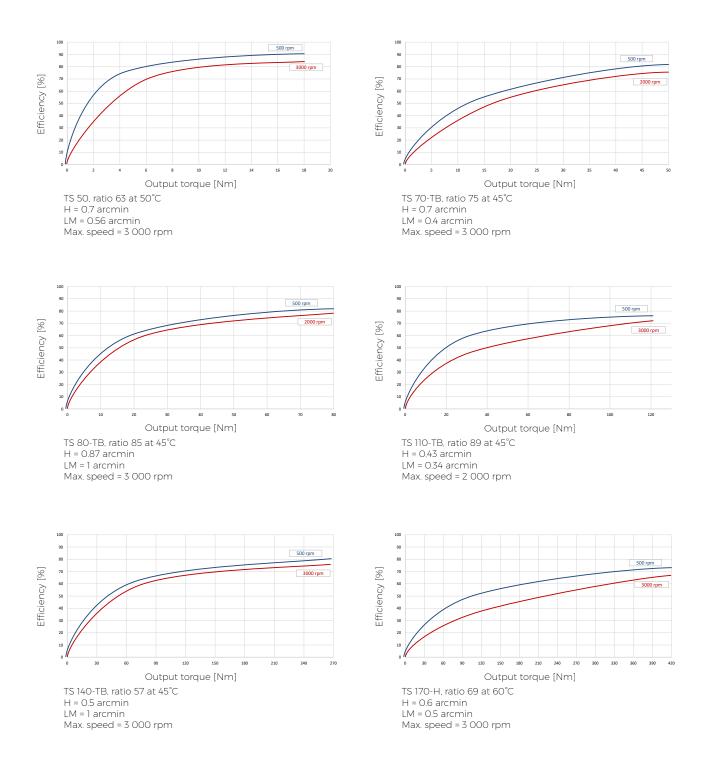
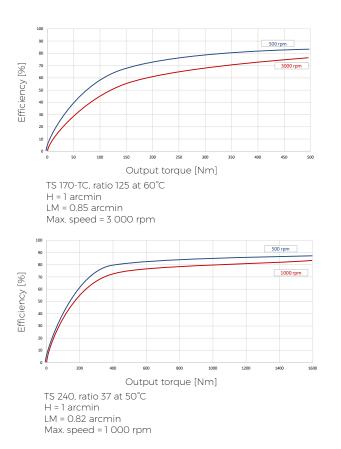
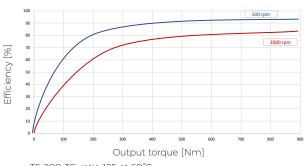
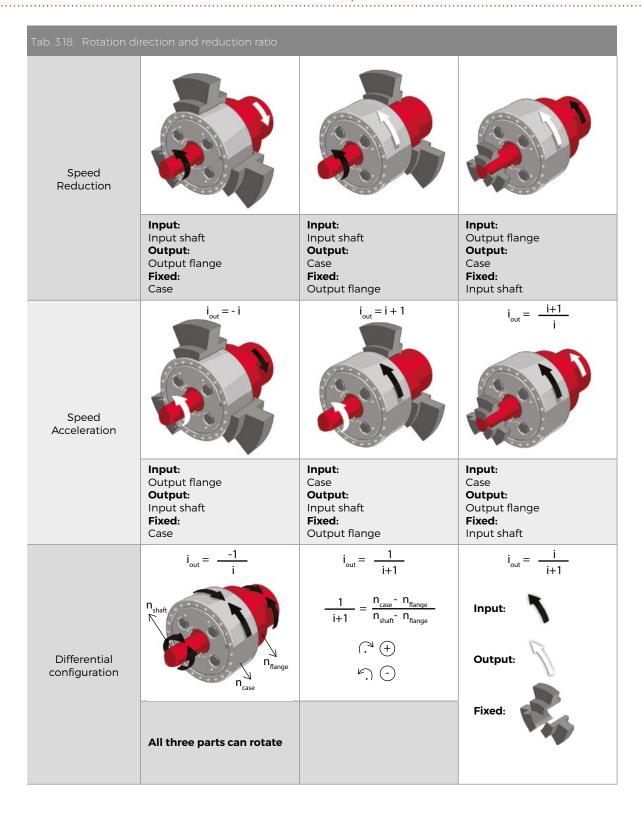




Fig. 3.17: Efficiency charts

TS 200-TC, ratio 125 at 60°C H = 0.71 arcmin LM = 0.5 arcmin Max. speed = 3 000 rpm


Fig. 3.17: Efficiency charts

3.18 **G, GH, T, E, H, M** series rotation direction and reduction ratio

In the following equations, $+i_{out}$ represents input and output rotations in one direction, $-i_{out}$ represents input and output rotations in the opposite direction. The available reduction ratio "i" values are provided in the rating tables in Chapter 2.

$$i_{out} = \frac{speed_{input}}{speed_{output}}$$

4. TwinSpin® selection procedure

4.1 **G, GH, T, E, H, M** series duty cycle

T, - maximum output torque at acceleration [Nm]

T₂ - output torque at constant speed [Nm]

T_z - maximum output torque at deceleration [Nm]

T_{max} - max. output torque at emergency stop [Nm]

T_{em} - allowable emergency torque

- acceleration time [s]

t, - constant motion time [s]

t, - deceleration time [s]

 t_{λ} - idle time [s]

 n_z

t - duty cycle time [s]

 $\rm n_{c\,max}\,$ - maximum continuous input speed [rpm]

- average input speed at acceleration [rpm]

n, - input speed at constant motion [rpm]

- average input speed at deceleration [rpm]

n_{max} - maximum input speed [rpm]

F, - radial output flange load [N]

 ${\sf F}_{\sf rl}, {\sf F}_{\sf r2}, {\sf F}_{\sf r3}$ – radial output flange load during acceleration, during

constant speed and during deceleration [N]

F_a - axial output flange load [N]

a - radial load effective arm Fr [m]

b - axial load effective arm Fa [m]

i - reduction ratio

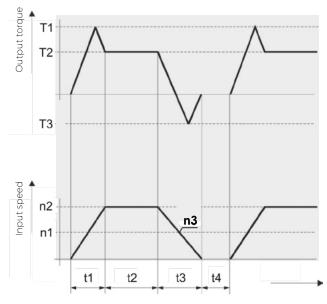


Fig. 4.1: Duty cycle

In case the duty cycle is different from the one shown, please supply the drawing and values of your duty cycle. These values are important to us to be able to effectively determine lifetimes of TwinSpin® reduction gears.

4.2 **G, GH, T, E, H** series selection flowchart

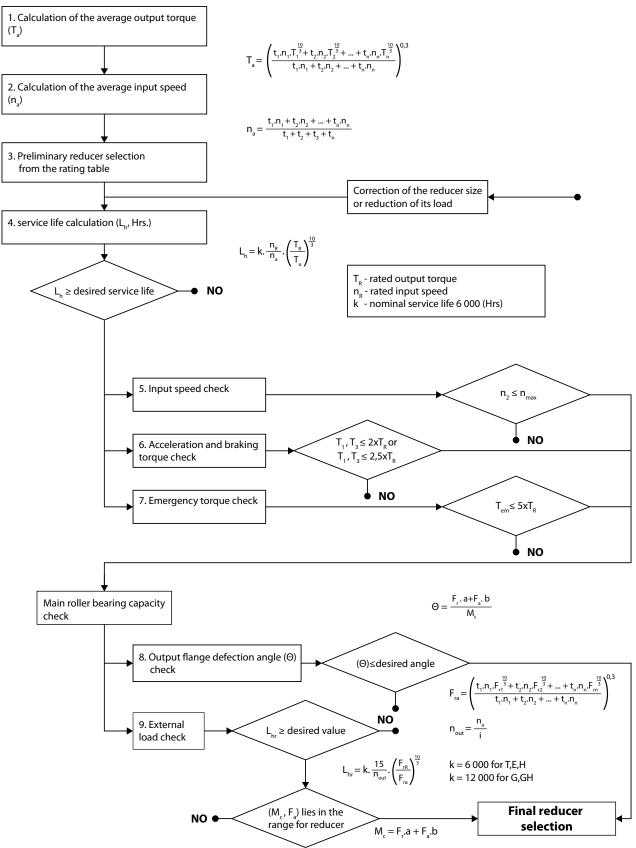


Fig. 4.2: Flowchart

4.2.1 M series selection flowchart

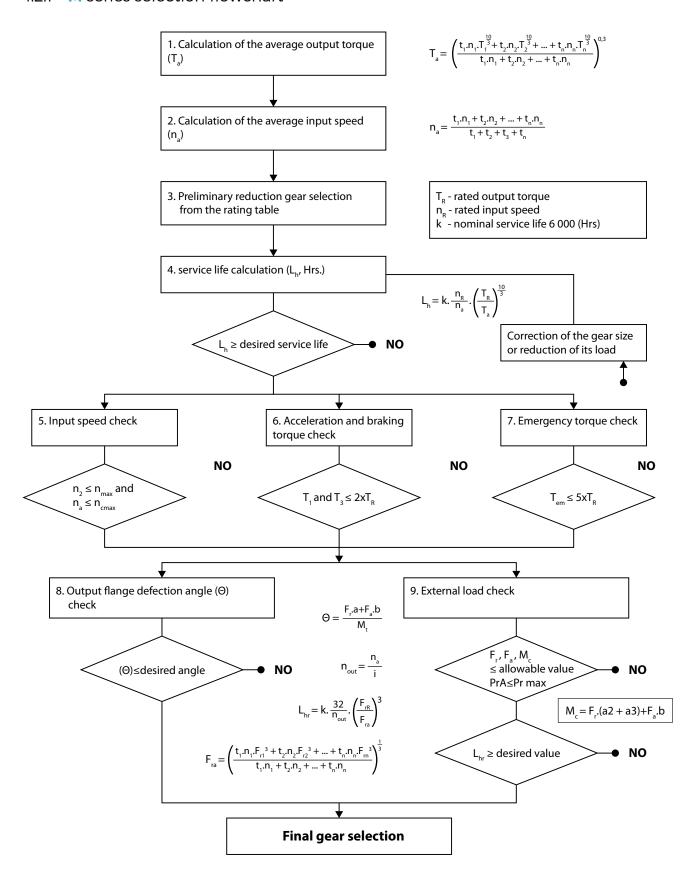


Fig. 4.2.1: Flowchart

4.3 **T, E, H** series selection flowchart

Input data - selected conditions

 n_1 = 1 500 rpm - Average acceleration input speed

 n_2 = 3 000 rpm - Constant input speed

 $n_3 = 1500 \text{ rpm}$ - Average braking input speed

F_a = 1 500 N - Radial load F_a = 1 500 N - Axial load

 $a^{2} = 0.15m$ - Radial force tilting arm b = 0.2m - Axial force tilting arm

 $\Theta_{ ext{max}}$ = 3 arcmin. - Max. allowable output flange deflection angle

t₁ = 0.3 sec. - Acceleration time t₂ = 0.5 sec. - Constant speed time t₃ = 0.2 sec. - Braking time

Calculation example

1. Calculation of average output torque (Ta)

$$\mathsf{T}_{a} = \left(\frac{0.3 \times 1500 \times 420^{\frac{10}{3}} + 0.5 \times 3000 \times 310^{\frac{10}{3}} + 0.2 \times 1500 \times 520^{\frac{10}{3}}}{0.3 \times 1500 + 0.5 \times 3000 + 0.2 \times 1500}\right)^{0,3} = 379.6 \; \mathsf{Nm}$$

2. Calculation of average input speed (n_a)

$$n_{a} = \frac{0.3 \times 1500 + 0.5 \times 3000 + 0.2 \times 1500}{0.3 + 0.5 + 0.2} = 2250 \text{ rpm}$$

3. Preliminary selection of a reduction gear from the rating table (Chapter 2): **TS 170-141-TC** Technical specifications of the selected reduction gear:

 $M_{\star} = 705 \text{ Nm/arcmin.} - \text{Tilting stiffness}$

 $\begin{aligned} & \text{M}_{\text{cmax}} = 2 \text{ 430 Nm} & - \text{Maximum moment (F}_{\text{a}} = 0) \\ & \text{F}_{\text{rmax}} = 19 \text{ 300 N} & - \text{Maximum radial force} \\ & \text{F}_{\text{a max}} = 27 \text{ 900 N} & - \text{Maximum axial force (M}_{\text{c}} = 0) \end{aligned}$

4. Service life calculation (L_h)

$$L_h = 6000 \times \frac{2000}{2250} \times \left(\frac{495}{379.6}\right)^{\frac{10}{3}} = 12919 \text{ hrs}$$

5. Input speed check (n₂, n_{max})

$$(n_2 = 3\ 000\ rpm) < (n_{max} = 4\ 000\ rpm)\$$
ok

6. Acceleration and braking torque check (T_1, T_3, T_{max})

$$(T_{_1} = 420 \text{ Nm}) < (T_{_{max}} = 1 238 \text{ Nm}) \text{ ok} \ (T_{_{3}} = 520 \text{ Nm}) < (T_{_{max}} = 1 238 \text{ Nm}) \text{ ok} \$$

7. Emergency braking torque check (T_{em})

$$(T_{em} = 1 500 \text{ Nm}) < (2 475 \text{ Nm}) \text{ ok}$$

8. Output flange tilting angle check (Θ)

$$(\Theta = \frac{1500 \times 0.1885 + 1500 \times 0.2}{705} = \frac{582.75}{705} = 0^{\circ}0'49'') < (\Theta_{\mbox{max}} = 3') \ \mbox{ok}$$

9. External load check (F $_{\rm r}$, F $_{\rm a}$, M $_{\rm c}$) Tilting arm (see Fig. 3.6)

$$a = a1+a2$$

 $a1 = L/2 = 77 \text{ mm}/2 = 38.5 \text{ mm} = 0.0385 \text{ m}$
 $a = 0.0385+0.15 = 0.1885 \text{ m}$

$$(F_r = 1500 \text{ N}) < (F_{max} = 19300 \text{ N}) \text{ ok}$$

Service life calculation of the main bearing ($L_{\rm hr}$) at radial force F = 1500 N

$$n_{out} = \frac{2250}{141} = 15,95$$

$$L_{hr} = 6000 \times \frac{15}{15.95} \times \left(\frac{19250}{1500}\right)^{\frac{10}{3}} = 27.9 \times 10^{6} \text{ hrs}$$

Moment on the output flange

$$M_c = 1500 \times 0.1885 + 1500 \times 0.2 = 582.75 \text{ Nm}$$

Maximum allowable moment at axial force $F_a = 1500 \text{ N}$

$$M_{\text{C allow.}} = M_{\text{cmax}} - \frac{M_{\text{cmax}} \times F_a}{F_{\text{amax}}} = 2430 - \frac{2430 \times 1500}{27900} = 2300$$
 Nm

$$(M_c = 582.75) < (M_{c \text{ allow}} = 2300 \text{ Nm}) \text{ ok}$$

Based on Chapter 3.5, a point with the coordinates of (M_c, F_a) , i.e. (582.75 Nm; 1.5 kN), lies inside the range for the selected TS 170 reduction gear.

Since all the requirements have been met, selection of the TS 170-141-TC reduction gear is correct.

4.3.1 M series selection example

Input data - selection conditions

T, = 15 Nm - Acceleration torque - Constant torque $T_2 = 10 \text{ Nm}$ - Braking torque $T_3 = 14 \text{ Nm}$ T_{em} = 25 Nm - Emergency torque t_1 = 0.3 sec. - Acceleration time $t_{3} = 0.5 \text{ sec.}$ - Constant speed time - Constant 5₁₋ - Braking time t, = 0.2 sec.

N₁ = N₂ = 1 500/min - Avg. accel. input speed / Avg. braking input speed

 $N_2 = 3 000/min$ - Constant input speed

 $N_2 = 5 \text{ OOC},$ $F_r = 300 \text{ N}$ - Radian i.e. - Axial load - Radial load

a2=0.012 m - Radial force tilting arm
b = 0.015 m - Axial force tilting arm

 $\Theta = 5'$ - Output flange deflection angle

Calculation example

1. Calculation of average output torque (T_)

$$T_{a} = \left(\frac{0.3x1500x15^{\frac{10}{3}} + 0.5x3000x10^{\frac{10}{3}} + 0.2x1500x14^{\frac{10}{3}}}{0.3x1500 + 0.5x3000 + 0.2x1500}\right)^{0.3} = 12 \text{ Nm}$$

2. Calculation of average input speed (n_a)

$$n_{a} = \frac{0.3 \times 1500 + 0.5 \times 3000 + 0.2 \times 1500}{0.3 + 0.5 + 0.2} = 2250 \text{ rpm}$$

3. Preliminary selection of a reduction gear from the rating table (Chapter 2): TS 50-63-M-P6 General specifications of the TwinSpin® reduction gear are:

 $T_{D} = 18 \text{ Nm}$ - Rated output torque - Rated input speed $n_p = 2000 \text{ rpm}$ $T_{\text{max}} = 36 \text{ Nm}$ - Maximum torque T_{em} = 90 Nm - Emergency torque

n_{max} = 5 000 rpm - Maximum allowable input speed - Maximum continuous input speed $n_{c max} = 3 000 rpm$

 $M_{\star} = 4 \text{ Nm/arcmin.}$ - Tilting stiffness al = 0.02 m; a2 = 0.012m - Distance of action a = 0.02 + 0.012 = 0.032 m - Distance of action $F_{r,max} = 44/(a2+0.0305) N$ - Max. radial force $F_{a \text{ max}} = 1900 \text{ N } (F_r = 0, M_c = 0) - \text{Max. axial force } (M_c = 0)$

4. Calculation of the life of M series TwinSpin® reduction gear (Lh)

$$L_{h} = 6000 \frac{2000}{2250} \left(\frac{18}{12} \right)^{\frac{10}{3}} = 20 605 \text{ hrs}$$

5. Control of input speed

$$n_2 = 3000/min < 5000 \text{ rpm and } n_a = 2250/min < n_{cmax} = 3000 \text{ rpm}$$

6. Control of start-up and braking torque

$$T_1 = 15 \text{ Nm} < 36 \text{ Nm} \text{ and } T_3 = 14 < 36 \text{ Nm}$$

7. Control of torque during emergency braking

......

$$T_{em} = 25 \text{ Nm} < 90 \text{ Nm}$$

8. Control of tilt angle Θ of the output flange

$$\Theta = \frac{300.0,032 + 400.0,015}{4} = 3.9 < 5$$

9. Control of external load on the reduction gear's output flange

a)
$$F_a = 400 \, N < F_{a \, max} = 1900 \, N$$

b)
$$M_c = F_a \cdot b + F_r \cdot (a2 + a3)$$

 $M_c = 400 \cdot 0,015 + 300 \cdot (0,012 + 0,0095) = 12,45 \text{ Nm}$
 $M_c = 12,45 \text{ Nm} < M_{c \text{ max}} = 44 \text{ Nm}$

c)
$$F_{rmax} = M_{cmax} / (a2+0,0305)$$

 $F_{rmax} = 44 / (0,012+0,0305)$
 $F_{rmax} = 1035,3 N$
 $F_{r} = 300 N < F_{rmax}$

d)
$$PrA = X.(M_c/L1 + F_r) + Y.F_a$$

Calculation of coefficients X and Y according to Tab. 3.5.2b

RAx/Cor=
$$F_a$$
/Cor \rightarrow e
400/3850=0,104 \rightarrow e=0,30

$$RAx/RAy = F_a/(M_c/L1 + F_r) \rightarrow X, Y$$

 $400/(12,45/0,021 + 300) = 0,448 > e \rightarrow X = 0,56; Y = 1,46$

$$PrA = X.(M_c/L1 + F_r) + Y.F_a$$

$$PrA = 0.56.(12,45/0,021 + 300) + 1,46.400$$

$$PrA = 1084 N < P_{rmax} = 2100 N$$

Calculation of the life of the main bearing

$$n_{out} = \frac{2250}{63} = 35,71 \text{ rpm}$$

$$L_{hr} = 6000. \frac{32}{35,71} \cdot \left(\frac{1035,3}{300}\right)^3 = 220 \ 977 \ hrs$$

Since all requirements have been met, the selection of the TS 50-63-M reduction gear is correct.

5. Assembly

5.1 G, GH, T, E, H, M series assembly manual

To get the maximum performance from the TwinSpin® high precision reduction gear, it is important to pay attention to the installation, assembly accuracy, sealing and lubrication. Most motor adapter flanges are available on request, please contact the sales department or your local sales representative for further assistance.

5.1.2 **G** series tightening torques

For the safe transmission of external loads applied to the TwinSpin® high precision reduction gear, it is required to use connecting screws of at least 10.9 grade and to degrease contact surfaces of friction joints before the installation. Tightening torques of screws are shown in Tab. 5.1.2a.

Allowable torques transmitted through connecting screws on flange and case are shown in Tab. Tab. 5.1.2b.

Tab. 5.1.2a: Tightenii	ng torques of screws		
Screw	Tightening torque [Nm]	Clamping force [N]	Screw material class and specification
M3	1,9 / 2.2	3 100 / 3 700	
M4	4.3 / 5.1	5 300 / 6400	
M5	8.4 / 10.2	8 800 / 10 600	
M6	14 / 17	12 400 / 14 900	10.9 / 12.9K*
M8	35 / 42	22 750 / 27 300	*10K / 12K
M10	70 / 85	36 200 / 43 500	$R_m = 1000/1200$ MPa - min. tensile strength of screw material
M12	122 / 147	52 900 / 63 500	R_{p02} = 900 /1 080 MPa - min. yield strengths

Tab. 5.1.2b: Allowable torques transmitted through connecting screws									
Size	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]			
TS 75	12xM5	38	360	18xM3	69	340			
TS 85	12xM5	50	470	18xM3	81	400			
TS 95	18xM4	53	450	18xM4	88	760			
TS 115	18xM5	68	970	18xM4	108	930			
TS 125	18xM6	71	1 190	18xM5	116	1 380			
TS 155**	18xM8	96	2 950	28xM5	146	2 670			
TS 185**	24xM8	119	4 870	30xM6	177	4 940			
TS 225**	32xM8	156	8 500	21xM8	207	7 400			

^{**} Screw material 10K

5.1.1 **T** series installation examples - unsealed gears

 \bullet Description of T model installations on Fig. 5.1.2 a, b, c, d:

Fig. 5.1.2 (a, b, c, d) shows examples of possible high precision reduction gear installations, their connections and sealing methods. In the case of direct connections (case a) of the reduction gear with a motor shaft, tolerances must be observed to avoid uncontrolled bending pressure and overload of the motor shaft. The tolerance values are given in Tab. 5.1.5.

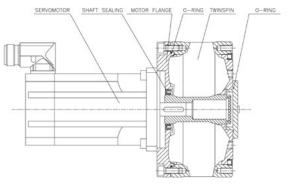
Fig. 5.1.2b shows the direct method of the connection between a motor shaft and the reduction gear shaft, where the torque from the engine is transmitted through a keyway. The advantage of this connection is the short design length of the drive. This method of connection can be used if the motor shaft has a keyway and its diameter is identical with the diameter of the hole in the shaft of the reduction gear.

Fig. 5.1.2b shows the most common method of connection by using a flange with a shaft seal.

If the motor shaft does not have a keyway or its diameter is not equal to the diameter of the hole in the shaft of the reduction gear, then rigid (Fig. 5.1.2c) or flexible couplings (Fig. 5.1.2d) may be used.

A toothed pulley may be fixed with a shaft inserted into the hole of the reduction gear according to Fig. 5.1.2d, or with a reduction gear with an extended shaft.

When installing the reduction gear, please observe the dimensional tolerances of mounting diameters and prevent contamination of the reduction gear and/or leakage of the lubricant. For this purpose see Fig. 5.1.3a.


Motors that meet the standard flange and keyway tolerances, as are specified in the DIN 42955 standard, are acceptable for standard applications. To make use of the overall performance and lifetime characteristics of TwinSpin® and for high precision applications, the manufacturer recommends to choose motors that comply with the DIN 42955R standard.

Further examples of possible installations are available in the TwinSpin® Application Handbook.

Please contact the sales department or your local sales representative for further details.

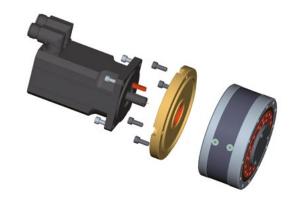


Fig. 5.1.2a:

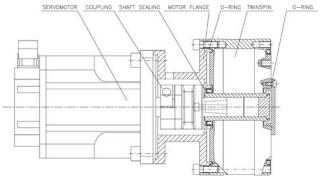


Fig. 5.1.2b:

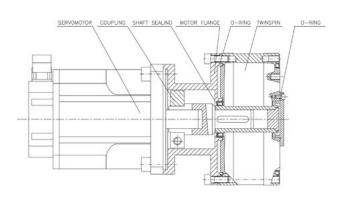
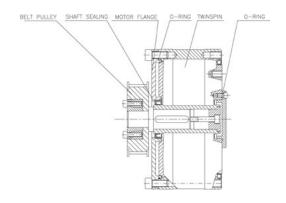



Fig. 5.1.2c:

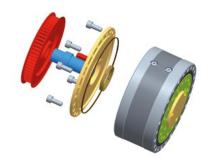
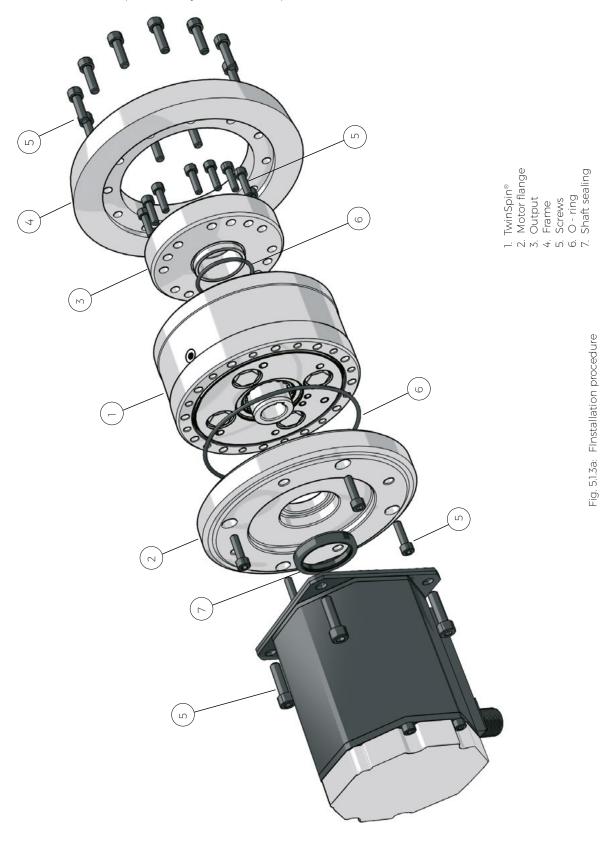


Fig. 5.1.2d:


Fig. 5.1.2: Most frequent connections

5.1.3 **T** series installation procedure

Prior to the installation, wipe off the protective oil film from from the reduction gear surface with a clean and dry cloth. Degrease the contact surfaces.

Please contact the sales department or your local sales representative for further information.

5.1.4 Dimensions and tolerances of the **T** series connecting parts example

Tab. 5.1.4a: [Dimensi	on table	of input	and outp	out flange	es of the	T series T	winSpin®	reductic	n gears	[in mm]	Fig. 5.1.4a	
Туре		ØA g6	ØB2	ØB h9	ØC+0,1	ØD	ΦE	ØF H8	ΦG	ФН	ØJ j6	ØK+0,2	ΦL
TS 60		-	69	49,2	-	-	-	-	57	12,5	15,5	18	42
TS 70		59,3	-	57,9	57.9	34	28	30	64	22	26	-	42
TS 80		-	86	65	-	-	-	-	73	18	22,3	25	69
TS 110		93	-	90	90	36	29	32	100	24	32	33	69
TS 140		119	-	116	112	48	39	42	127	34	42	43	92
TS 170		145	-	142	138	54	44	47	156	39	47	48	110
TS 200		170	-	167	167	62	48	52	183	43	52	53	131
TS 240		-	250	201,3	-	-	-	-	220	47	57	60	110
TS 300		_	312	249.6	_	_	_	_	274	50	60	66	131
Туре		ØΝ	ØP H7	ØR	ØS	ФТ	Al	A2	A3	A4	B1	B2	B3
TS 60		4,3	63	51	57	3,2	-	-	R 0,2	R 0,3	-	-	0,5x45°
TS 70		4,3	70	58	64	3,2	R 2	R 0,8	-	-	0,3x45°	0,3x45°	0,3x45°
TS 80		5,3	80	65	73	4,3	-	-	R 0,3	R 0,3	-	-	0,5x45°
TS 110		6,4	110	88	100	5,3	R 0,8	R 0,8	R 0,2	-	0,3x45°	0,5x45°	0,5x45°
TS 140		6,4	140	115	127	6,4	R 0,8	R 0,8	R 0,2	-	0,5x45°	0,5x45°	0,5x45°
TS 170		8,4	170	140	156	8,4	R 0,8	R 0,8	R 0,3	-	0,5x45°	0,5x45°	0,5x45°
TS 200		10,5	200	165	183	10,5	R 0,8	R 0,8	R 0,3	-	0,5x45°	0,5x45°	0,5x45°
TS 240		13	240	201	220	12	-	-	R 0.4	R 0,4	-	-	0,5x45°
TS 300		17	300	248	274	16	-	-	R 0,4	R 0,4	-	-	0,5x45°
							E-7	F2			60	67.005	
Type		C1+0,2	C2	C3	E1 H12	E2	E3	F2	F3	G1-0,1	G2	G3+0,05	B3
TS 60		-	2	4	3,2	1,5	3	-	R 0,5	-	7,5	0,7	0,5x45°
TS 70		1,4	0,7	5	3.2	1,5	5	2,7	R 0,5	2,8	5	-	0,3x45°
TS 80		-	1,5	4	4,3	1,5	3	-	R 0,5	-	6	1,1	0,5x45°
TS 110		2	0,7	5	5,3	1,5	5	4,5	R 0,5	3,5	6	0,7	0,5x45°
TS 140		2	0,7	5	6.4	1,5	5	2	R 0,5	3.5	6	0.7	0,5x45°
TS 170		2	1	5	8,4	1,5	5	3,5	R 0,5	3,5	7	1,1	0,5x45°
TS 200		2,5	2	5	10,5	1,5	5	5,5	R 0,8	5,5	7,5	1,1	0,5x45°
TS 240		-	-	6	13	1,5	4,5	-	R 0,5	-	7,5	1,5	0,5x45°
TS 300		-	-	6	17	1,5	5	-	R 0,5	-	8,5	2,3	0,5x45°
Туре		G5	H1	H5+0,1	M+0,2	V	K1, K5	S5+O,2		O-rii	ng A*/ O-Ri	ηα Δ*	
TS 60		-	-	0.7	1,4	R 0,5	-	1,4	49x			ton-FPM70	
TS 70		2.8	5,5	-	1,-	R 0.2	0.2 x 45°	1,4	55x			ton-FPM70	
TS 80		2,0	٥,٥	0,7	1,4	R 0,2	U,Z X 43		65x			ton-FPM70	
TS 110		1,5	6	0,7		R 0.5	02/50	1,4					
				-	1,4		0.2 x 45°	-	88,62x			ton-FPM70	
TS 140		1,5	3,5	-	1,4	R 0,5	0.2 x 45°	-	114x1,			ton-FPM70	
TS 170		0	3.5	-	2,1		0.2 x 45°	-	140x1,			ton-FPM70	
TS 200		2,5	8	-	2,1	R 0,5	0,2 x 45°	-	165x			ton-FPM70	
TS 240		-	-	1,1	2,8	R 0,5	-	2,1	201,5>			ton-FPM70	
TS 300		-	-	1,5	3,9	R 0,5	-	2,8	250>	<2	Vit	ton-FPM70	
Туре			O-rir	ng B*			"/	Δ"	Double lip	oil sealir		B"	
TS 60		18	xl	Viton-F	-PM70	11x2	.2x6	FPM	1 70		-		
TS 70				Viton-F			30x5	75FKN			-		
TS 80		26>		Viton-F			30x7	75FKN			_		
TS 110		33,		Viton-F			32x6	75FKI		221	- :32x6	75FK1	V 505
TS 140		33, 43		Viton-F			42x6	75FKI			42x6		vi 595 vi 595
TS 170		48>		Viton-F			47x7	75FKN			(47x7		M 595
TS 200		54>		Viton-F			52x7	75FKN		38>	(52x7	75FKI	M 595
TS 240		60		Viton-F			55x7	75FKN			-		
TS 300		66	X3	Viton-F	-PM:/0	42x	55x8	75FKN	vi 595		-		

Note

Dimensions and technical parameters of the sealings need to be observed according to the data contained in the table. Possible changes should be discussed with the manufacturer.

5.1.1 (a, b, c, d) shows examples of possible high precision reduction gear installations, their connections and sealing methods.

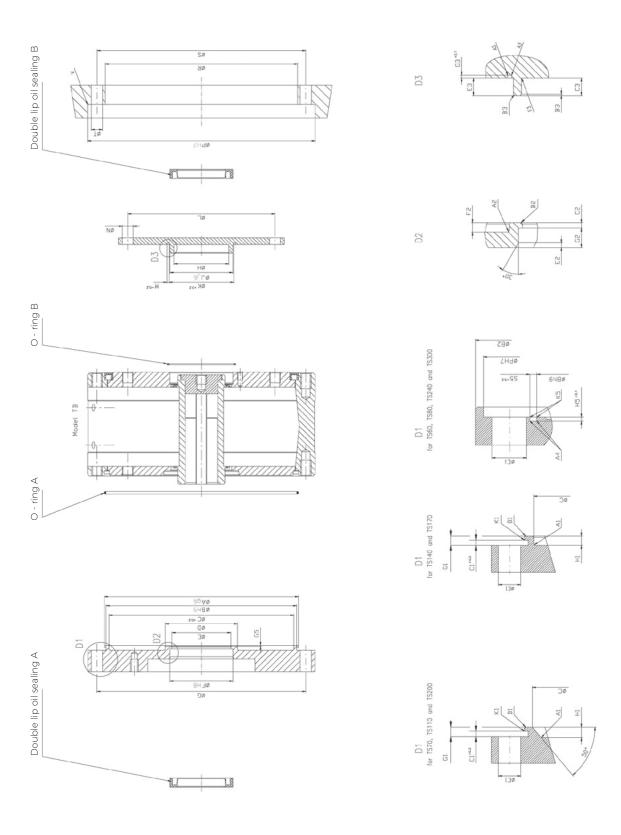


Fig. 5.1.4a: Dimensions of input and output flanges of the TwinSpin $^\circ$ T series reduction gear

5.1.5 **T** series connecting parts tolerances

According to the DIN 42955 R standard

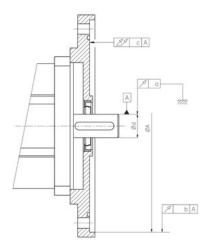


Fig. 5.1.5: Required tolerances of the T series a) valid for TS 70, TS 110, TS 140, TS 170, TS 200 b) valid for TS TS 80, TS 240, TS 300

Tab. 5.1.5: T series - r	equired tolerances [n	nm]			
Size	a	b	С	Ød	ФΑ
TS 60	0,015	0,040	0,038	6 k6	63 H7
TS 70	0,018	0,040	0,038	11 k6	59.3 g6
TS 80	0,015	0,050	0,038	8 k6	80 H7
TS 110	0,018	0,050	0,044	14 k6	93 g6
TS 140	0,021	0,050	0,050	19 k6	119 g6
TS 170	0,021	0,050	0,050	24 k6	145 g6
TS 200	0,021	0,060	0,058	24 k6	170 g6
TS 240	0,021	0,063	0,058	28 k6	240 H7
TS 300	0,021	0,063	0,064	28 k6	300 H7

5.1.6 **T** series circumferential and face run-out values

Tab. 5.1.6: T series -	circumferent	ial and face r	unout values	mm]				
Туре	Т	Z	R	Α	С	D	П	T2
TS 60	0,007	0.020	0,015	63 h7	15,5 H6	6 H7	0,05	0.05
TS 70	0,007	0.020	0,015	70 h7	26 H6	11 H7	0,05	0.05
TS 80	0,007	0.020	0.015	80 h7	22,3 H6	8 H7	0.06	0.05
TS 110	0,008	0,025	0,015	110 h7	32 H6	14 H7	0.07	0.06
TS 140	0,009	0,025	0,015	140 h7	42 H6	19 H7	0,07	0,06
TS 170	0,010	0,025	0,015	170 h7	47 H6	24 H7	0,07	0,06
TS 200	0,010	0,035	0,020	200 h7	52 H6	24 H7	0,08	0,06
TS 240	0,013	0.040	0.020	240 h7	57 H6	28 H7	0,08	0,06
TS 300	0,013	0,040	0,020	300 h7	60 H6	28 H7	0,08	0,06

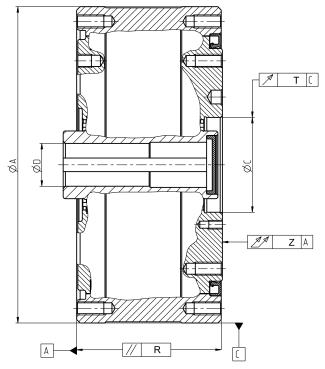


Fig. 5.1.6a: Tolerances of circumferential and face runout for direct connection of TwinSpin® high precision reduction gears with a servomotor in accordance with DIN 42955 R

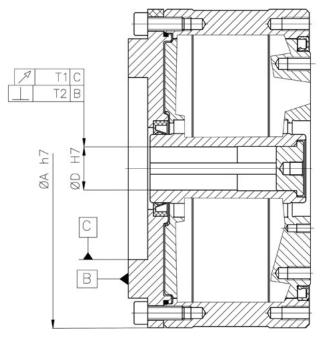


Fig. 5.1.6b: Circumferential and face runout values of the TwinSpin® T series

5.1.7 T series tightening torques

For the safe transmission of external loads applied to the TwinSpin® high precision reduction gear, it is required to use connecting screws of at least 10.9 grade and to degrease contact surfaces of friction joints before the installation. Tightening torques of screws are shown in Tab. 5.1.7a.

Allowable torques transmitted through connecting screws on flange and case are shown in Tab. 5.1.7b.

Tab. 5.1.7a: Tightenii	ng torques of screws						
Screw	Tightening torque [Nm]	Clamping force [N]	Screw material class and specification				
M3	1,9	3 100					
M4	4,3	5 300					
M5	8,4	8 800					
M6	14	12 400	ISO 898 T1 10.9 or 12.9				
M8	35	22 750					
M10	70	36 200					
M12	122	52 900					

Tab. 5.1.7b: Allowab	le torques transmi	tted through con	necting screws				
Size	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]	
TS 60	8xM4	34	108	12xM3	57	160	
TS 70	14xM4	42	233	16xM3	64	238	
TS 80	8xM5	46	242	12xM4	73	348	
TS 110	14xM6	69	898	12xM5	100	792	
TS 140	14xM6	92	1 740	12xM6	127	1 410	
	8xM6	74				1 110	
TS 170	14xM8	110	3 700	12xM8	156	3 200	
13 170	8xM8	80	3 700	IZAIVIO	150	3 200	
TS 200	14xM10	131	6 950	12xM10	183	5 900	
13 200	8xM10	95	0 930	IZXIVIIO	103	3 900	
TS 240	14xM12	160	8 800	12xM12	220	10 400	
TS 300	14xM16	200	21 000	12xM16	274	24 600	

5.2 **E** series installation examples

5.2.1 E series installation examples - unsealed gears

Description of the E series installation:

Fig. 5.2.1a It is possible to use a direct connection of the TwinSpin® reduction gear with a motor, if the motor shaft has the same diameter as the hole in the reduction gear.

Fig. 5.2.1b It is possible to use a connection of two different shafts by flexible couplings, if the shafts have different diameters.

Fig. 5.2.1c Mounting of a toothed pulley on the input shaft of the TwinSpin® reduction gear.

Fig. 5.2.1 shows examples of TwinSpin® reduction gear installations, connections and sealing methods. In the case of direct connections of the reduction gear with a motor shaft, tolerances must be observed to avoid uncontrolled bending pressure and overload of the motor shaft. Tolerance values are shown in Tab. 5.2.3. When installing TwinSpin® reduction gears, observe dimensional tolerances of mounting diameters and avoid contamination of the high precision reduction gear and/or leakage of the lubricant.

Motors that meet the standard flange and keyway tolerances, as specified in the European DIN 42955 standard, are acceptable for standard use. In order to make use of the overall performance and durability of TwinSpin® and for high precision applications, the manufacturer recommends to choose motors that meet the European DIN 42955 R standard. Our sales department will be happy to provide you with additional information on the standards or technical assistance for your specific applications. More installation options can be found in the TwinSpin® Application and Service Manual. Please contact the sales department or your local sales representative.

Examples of drive connection with the input shaft

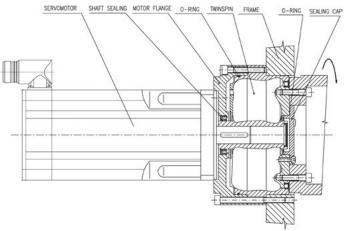


Fig. 5.2.1a: Direct connection of the reduction gear shaft with the motor shaft

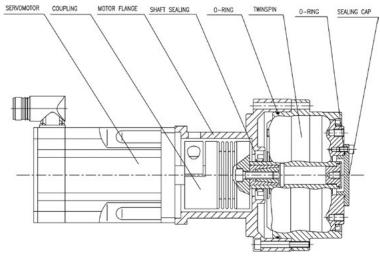
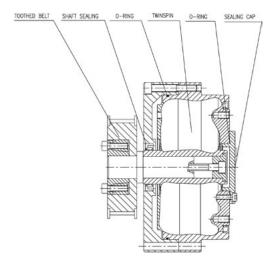



Fig. 5.2.1b: Connection of the motor with the reduction gear with a flexible coupling

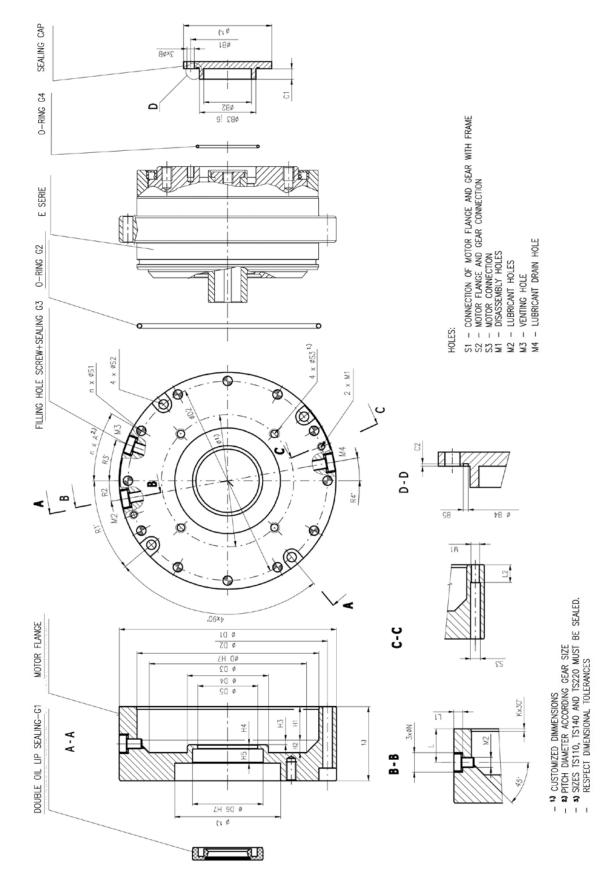
Note: The sealing cap is used only with reduction gears TS 110, TS 140, TS 220 Fig. 5.2.1c: Connection of the reduction gear with a toothed pulley

Fig. 5.2.1: Most frequent connections

5.2.2 **E** series installation procedure

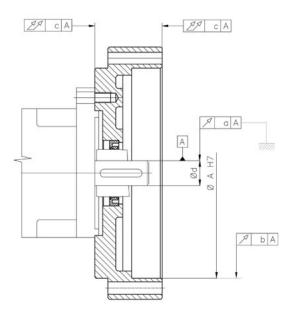
Prior to the installation, wipe off the protective oil film from the reduction gear's surface with a clean and dry cloth. TwinSpin® high precision reduction gears are not protected against corrosion. Please contact the sales department or your local sales representative for further information.

5.2.3 **E** series connecting parts dimensions and tolerances


Туре	Ø D H7	Ø D1	Ø D2	Ø D3	Ø D4	Ø D5	Ø D6 H8	H1	H2
TS 70	67	85	76	56	36	26	30	11,5	6.5
TS 80	75	95	85	60	38	28	32	14,5	7.5
TS 110	103	123	113	89	46	36	40	19	7.5
TS 140	128	150	140	111,5	50	38	42	15	8
TS 170	160	190	175	139	65	46	50	23	11
TS 200	186	225	206	176	66	46	52	30	5
TS 220	198	238	220	178	-	46	52	30	10
Туре	H3	H4	H5	Kx3	60°	L	Ll	L2	2xM1
TS 70	2,5	2,5	6,5	1x3	50	14,5	4,5	6	M4
TS 80	2,5	2	8,5	1x3		16,5	5	8	M5
TS 110	2,5	2,5	8	1,5x	30	21	5.5	10	M5
TS 140	5	2,5	9	1,5x	30	21	6	10	M6
TS 170	7,5	2,5	9	2x ²	30	24	5.5	12	M8
TS 200	0	3	9	2x ²	30	27	6	12	M10
TS 220	0	3	9	2x3	30	32	8	12	M8
Туре	M2, M3, M4	n x ØN	Rì°	R2	<u>2</u> °	R3°	R4°	n x S1	4 x S2
TS 70	M4	3x10	30	12	2	15	-15	8xØ5.5	4xØ5,5
TS 80	M5	2x10	48	15	5	-	15	10xØ5,5	4xØ5,5
TS 110	M6	3x11	40	10)	20	20	12xØ5,5	4xØ5,5
TS 140	M10x1	3x15	40	10)	20	10	12xØ6,5	4xØ5,5
TS 170	M10x1	3x15	40	10)	20	10	12xØ9	4xØ8,
TS 200	M10x1	3x15	40	15	5	15	15	12xØ11	4xØ8,
TS 220	M10x1	2x15	40	-		20	20	12xØ11	4xØ11
Туре	Seal G1 (FPM 70)		ng G2 M 70)		Plug			lat sealing G3 I 7603 (cuprur	m)
TS 70	20 x 30 x 5		. x 2	M4 x 8	DII	V 7984		4 x 8 x1	
TS 80	16 x 32 x 7	70) x 2	M 5 x 8	DII	V 7984		5 x 9 x 1	
TS 110	22 x 40 x 7	95	i x 2	M6 x10	DII	V 7984		6 x 10 x 1	
TS 140	30 x 42 x 6	122	2 x 2	M10x1	DI	N 908		10 x 14 x 1.5	
TS 170	36 x 50 x 7	150) x 2	M10x1		N 908		10 x 14 x 1.5	
TS 200	38 x 52 x 7	175	5 x 2	M10x1	DI	N 908		10 x 14 x 1.5	
TS 220	38 x 52 x 7	195	5 x 2	M10x1	DI	N 908		10 x 14 x 1.5	
Туре	пх∅В	Ф В1	Ø B2	Ø B3 j6	Ø B4	B5 + 0.2	C1	C2+0.05	O-ring
TS 110	3 x 4.3	42	27	32	33	1,4	6	0,7	33 x
TS 140	3 x 4.3	53	36	42	43	1,4	6.5	0.7	43 x
TS 220	3 x 5.3	75	69	110	-	-	4	-	110 x
Туре	Ø D H7	Ø D1	Ø D2	Ø D3	Ø D4	Ø D5	Ф D6 H8	Hì	H2
TS 70	67	85	76	56	36	26	30	11,5	6,5
TS 80	75	95	85	60	38	28	32	14,5	7,5
TS 110	103	123	113	89	46	36	40	19	7
TS 140	128	150	140	111,5	50	38	42	15	8
TS 170	160	190	175	139	65	46	50	23	11
TS 200	186	225	206	176	66	46	52	30	5
TS 220	198	238	220	178	_	46	52	30	10

Note

The output flange of TwinSpin® high precision reduction gears TS 70-E, TS 80-E, TS 170-E and TS 200-E is sealed as a standard. No additional sealing cap is needed.



Dimensions and tolerances of the E series connecting components

5.2.4 **E** series mounting tolerances

The requirements for circumferential and face runout in the case of a direct connection of the high precision reduction gear with a servomotor with a shaft in accordance with DIN 42955R are specified in Fig. 5.2.4a. The tolerances are specified in Tab. 5.2.4

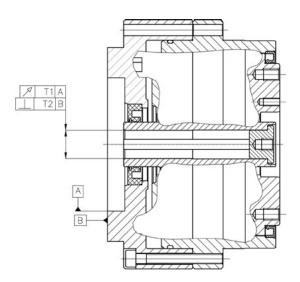


Fig. 5.2.4a: Geometric deviations for the connection of the E series TwinSpin® high precision reduction gear flange with a motor or of the TwinSpin® E series reduction gear

Tab. 5.2.4: Tolerances of circumferential and face runout in the case of a direct connection of TwinSpin® high precision reduction gears with a servomotor according to DIN 42955 R [mm]									
Туре	а	b	С	Tl	T2	U	Т	Z	V
TS 70	0,015	0,04	0,038	0,05	0.05	0,010	0,007	0,020	0.025
TS 80	0,015	0,05	0,038	0,06	0.05	0,010	0.007	0,020	0.025
TS 110	0,018	0,05	0.044	0,07	0.06	0,010	0,008	0,025	0.025
TS 140	0,021	0,05	0.05	0,07	0.06	0,010	0.009	0,025	0,030
TS 170	0,021	0,05	0.05	0,07	0.06	0,015	0.010	0,025	0.030
TS 200	0,025	0,05	0,058	0,07	0.06	0,015	0,010	0,035	0.030
TS 220	0,025	0,063	0,058	0,08	0,06	0,015	0,013	0,030	0,035

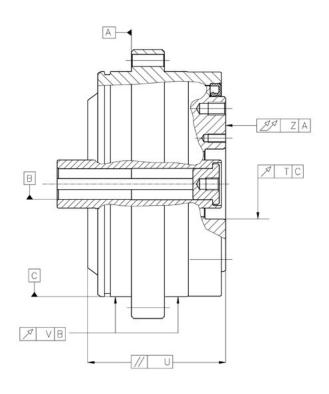


Fig. 5.2.4b: Tolerances of circumferential and face runout in the case of direct connection of TwinSpin $^{\circ}$ high precision reduction gears with a servomotor according to DIN 42955 R

5.2.5 **E** series tightening torques of connecting bolts

For the safe transmission of external loads applying on the TwinSpin® high precision reduction gear, it is required to use connecting screws of at least 10.9 grade and to degrease contact surfaces of friction joints before installation. Tightening torques of the screws are shown in Tab. 5.2.5b.

Allowable torque transmitted through the connecting screws on the flange and case are shown in Tab. 5.2.5b.

Tab. 5.2.5a: Tighten	ing torques of screws		
Screw	Tightening torque [Nm]	Clamping force [N]	Screw material class specification
M3	1.9	3 100	
M4	4,3	5 300	
M5	8.4	8 800	
M6	14	12 400	
M8	35	22 750	ISO 898 T1 10.9 or 12.9
M10	70	36 200	
M12	122	52 900	
M16	300	100 000	
M18	455	120 000	

Tab. 5.2.5b: Allowable torques transmitted through connecting screws								
		Output flange			Case			
Size	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]		
TS 70	5xM6	40	186*	10xM5	76	500		
TS 70	5xM6	40	254*	10xM5	76	500		
15 /0	with pin Ø6	40	254	IOXIVIS	70			
TS 80	8xM5	46	242*	10xM5	85	560		
TS 110	14xM6	69	890	14xM5	113	1040		
TS 140	18xM6	92	2090	12xM6	140	1560		
13 140	8xM6	74	2090	IZXIVIO	140	1500		
TS 170	18xM8	110	4470	14xM8	175	4180		
15 1/0	8xM8	80	4470	14X1VIO	1/5	4160		
TS 200	18xM12	129	9880	14xM10	206	7830		
13 200	8xM6	91	9000	14XIVITU	200	/030		
TS220	20xM10	140	7600	14xM10	220	8350		

^{*} Safe transmission of the the torque requires glue to be applied on the friction surfaces (NICRO 20-10, NICRO 32-02; LOCTITE 603)

5.3 H series installation examples

5.3.1 H series mounting examples

The H series is completely sealed and filled with grease for its lifetime. Fig. 5.3.1a, Fig. 5.3.1b and Fig. 5.3.1c show examples of connections with motors.

The through input shaft of the H series high precision reduction gear with an enlarged diameter allows to pass energy supply or control cables through the axis of the reduction gear to devices mounted behind the output flange. The H series reduction gear is most often used in combination with a pre-stage, which may comprise gears or toothed belt drives. A typical example of the H series reduction gear drive through a toothed belt is shown in Fig. 5.3.1a. The driven pulley is attached to the shaft of the reduction gear with screws, which have to be tightened with a tightening torque according to Tab. 5.3.4a and Tab. 5.3.4b. The driving pulley with the motor must be shiftable to allow the tightening of the belt.

Fig. 5.3.1b shows the drive of the input shaft through gears. The gears are housed in a frame, which is part of the reduction gear input flange.

Fig. 5.3.1c shows a toothed pulley mounted on the input flange by means of friction rings.

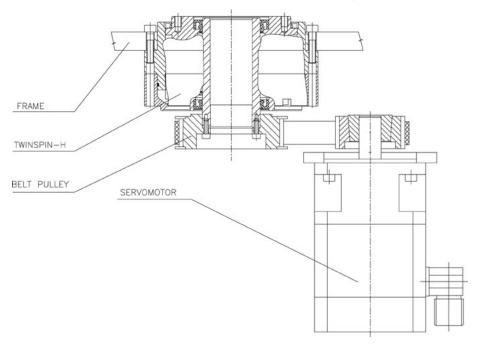


Fig. 5.3.1a: Connection of a toothed pulley with the reduction gear shaft by means of a screw connection

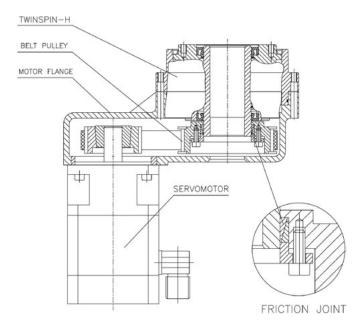


Fig. 5.3.1b: Connection of a toothed pulley with the reduction gear shaft by means of a friction connection

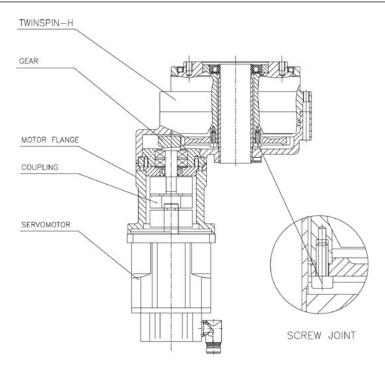


Fig. 5.3.1c: Connection of a gear wheel with the reduction gear shaft by means of a screw connection

5.3.2 H series installation procedure

Prior to the installation, wipe off the protective oil film from the reduction gear's surface with a clean and dry cloth. Degrease the contact surfaces of the friction-type of connections. TwinSpin® high precision reduction gears are not protected against corrosion. Please, contact the sales department or your local sales representative for further information.

5.3.3 H series mounting tolerances

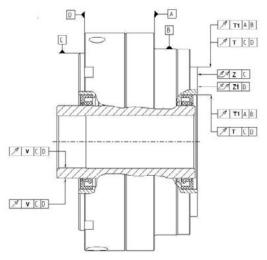


Fig. 5.3.3: Maximum geometric deviations for the H series reduction gear

Tab. 5.3.3a: Maximum geometric deviations for the H series reduction gear [mm]									
	TS 140H	TS 170H	TS 200H	TS 220H					
Т	0,02	0,02	0,02	0,02					
T1	0,013	0,015	0,015	0,015					
Z	0,025	0,025	0.03	0,03					
Z1	0,015	0,015	0.02	0,02					
V	0,05	0,05	0,06	0,06					

5.3.4 H connecting screws tightening torques

For the safe transmission of external loads applied to the TwinSpin® high precision reduction gear, it is required to use connecting screws of at least 10.9 grade and to degrease contact surfaces of friction joints before the installation. Tightening torques of screws are shown in Tab. 5.3.4a. Allowable torques transmitted through connecting screws on the flange and case are shown in Tab. 5.3.4b.

Tab. 5.3.4a: Tightening torques of screws				
Screw	Tightening torque [Nm]	Clamping force [N]	Screw material class specification	
M3	1.9	3 100		
M4	4,3	5 300		
M5	8.4	8 800		
M6	14	12 400		
M8	35	22 750	ISO 898 T1 10.9 or 12.9	
M10	70	36 200		
M12	122	52 900		
M16	300	100 000		
M18	455	120 000		

Tab. 5.3.4b: Allowable torques transmitted through connecting screws						
	Output flange		Case			
Size	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]
TS 70	5xM6	40	186*	8xM5	76	400
TS 70	5xM6 with pin Ø6	40 40	254*	8xM5	76	400
TS 140	16xM6	92	1400	12xM6	140	1560
TS 170	18xM8	110	3300	12xM8	175	3580
TS 200	18xM12	131	6400	12xM10	206	6700
TS220	20xM10	140	7600	12xM10	220	7100

^{*} Safe transmission of the the torque requires glue to be applied on the friction surfaces (NICRO 20-10, NICRO 32-02; LOCTITE 603)

5.4 M series installation examples

In order to achieve the maximum performance of the TwinSpin® high precision reduction gear, it is important to pay attention to the installation and accuracy of the assembly and lubrication. The M series high precision reduction gears are completely sealed. The modular design of the reduction gear allows the connection of different drive parts. Motor flanges and shaft couplings are required for this connection. We can design and supply such parts upon request together with a reduction gear.

5.4.1 M series installation examples

The most common cases of connections between the M series TwinSpin® high precision reduction gear and a servomotor are shown on Fig. 5.4.1a. Fig. 5.4.1b, Fig. 5.4.1c, and Fig. 5.4.1d. Direct connection of the shaft of the high precision reduction gear with a motor through a keyway. This connection requires that the motor shaft has the same diameter as the hole in the high precision reduction gear. In the case of direct connection of the reduction gear with a motor, all specified tolerances for the coupling flange must be met and only motors with shafts that meet the tolerances specified in the European DIN 42955 standard may be used. Our sales department will provide you with information on such standards or will provide technical assistance for your specific application.

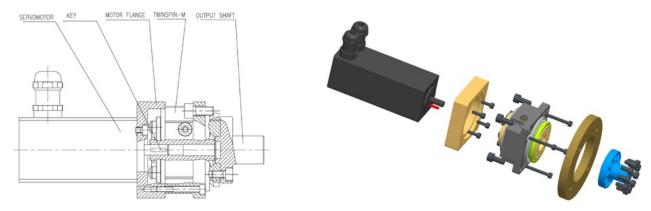


Fig. 5.4.1a: Shaft connection with a keyway

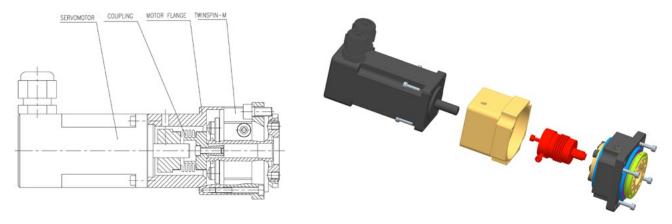


Fig. 5.4.1b: Shaft connection with a flexible coupling

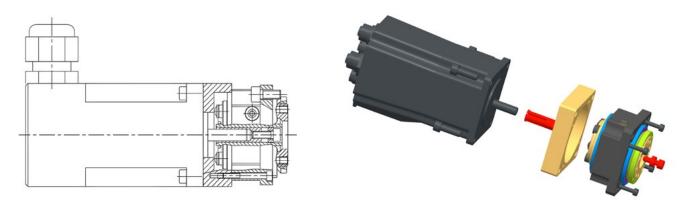


Fig. 5.4.1c: Shaft connection with a collet

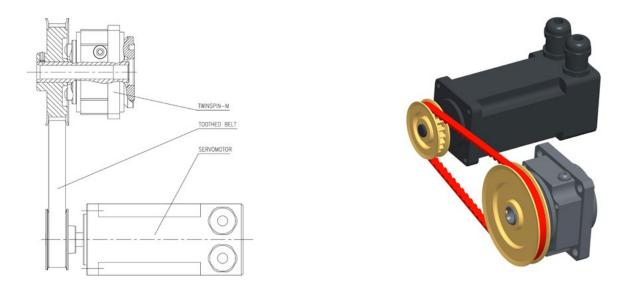


Fig. 5.4.1d: Example of the use of the hollow-shaft version of the reduction gear, driven through a toothed belt

5.4.2 M series installation procedure

A typical example of an assembly with TS 50 is shown on Fig. 5.4.2 Before the installation, it is desirable to wipe off the protective oil film from the surface of the reduction gear with a clean and dry cloth. Contact surfaces of friction joints must be degreased prior to the installation. When cleaning, make sure that the degreaser does not get into the reduction gear. During the installation, proceed with the following steps: first, fasten a coupling to the reduction gear, then the connecting motor flange to which the motor needs to be mounted and afterwards bolt the whole assembly to the frame.

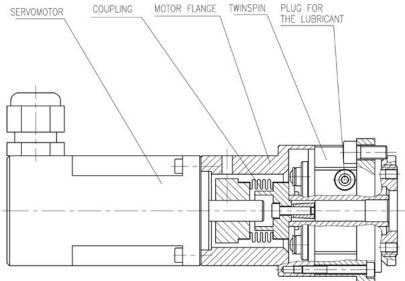


Fig. 5.4.2: Typical connection of a motor to the M series reduction gear

5.4.3 M series connecting parts tolerances

Tab. 5.4.3: Maximum geometric deviations for the M series reduction gear [mm]			
Tolerance	TS 50		
а	0.02		
b	0.04		
С	0.038		
d	6 j6		
А	47 H7		

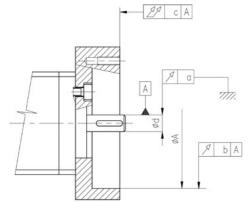


Fig. 5.4.3: Tolerances of M series connecting parts

5.4.4 M series connecting parts geometrical deviations

Tab. 5.4.4: M series reduction gear [mm]			
Tolerance	TS 50		
Т	0.01		
Z	0.02		
ØD H7	6.0		
ФС H7	15.5		
ØA h6	47.0		

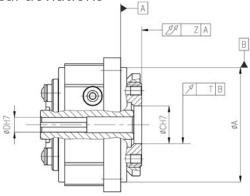


Fig. 5.4.4: Radial and axial runout of the output flange

5.4.5 M series connecting screws tightening torque

For the safe transmission of external loads applied to the TwinSpin® high precision reduction gear, it is required to use connecting screws of at least 10.9 grade and to degrease contact surfaces of friction joints before the installation. Tightening torques of screws are shown in Tab. 5.4.5a. Allowable torques transmitted through connecting screws on the flange and case are shown in Tab. 5.4.5b

Tab. 5.4.5a: Tightening torques of screws				
Screw	Tightening torque [Nm]	Clamping force [N]	Screw material class specification	
M3	1.9	3 100		
M4	4.3	5 300		
M5	8.4	8 800	ISO 898 T1 10.9 or 12.9	
M6	14	12 400		
M8	35	22 750		

Tab. 5.4.5b: Allowable torques transmitted through connecting screws						
		Output flange			Case	
Size	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]
TS 50	10xM4	28	110	4xM5	63	165

5.5 Lubrication, cooling, preheating

The TwinSpin® reduction gear is lubricated as a standard with the Castrol TRIBOL GR 100-0 PD or TRIBOL GR TT 1 PD grease. Alternatively, the Castrol OPTIGEAR 150 oil may be used. More information is available on www.castrol.com. It is forbidden to mix the lubricant used for the lubrication of the reduction gear with other types of lubricants. The lubricant change interval highly depends on the individual operating conditions.

Grease and oil quantities for individual TwinSpin® reduction gears are specified in Tab. 5.5.a. These quantities, however, do not include the space between the reduction gear and the connected parts. If no rotary shaft seal is used, the user must fill it with the lubricant. The change interval of the lubricant inside the reduction gear depends mainly on the actual operating conditions and duty cycle.

High temperatures and high speeds and loading will reduce the service life of the lubricant. In many cases re-lubrication will not be necessary because the reduction gear is filled for a long life. The recommended interval for lubricant change is 20 000 operating hours.

T series - is not a completely sealed series of high precision reduction gears, however, this series is normally filled with grease Castrol TRIBOL GR 100-0 PD or TRIBOL GR TT 1 PD. The recommended amount of grease for each size of T series reduction gears is shown in Tab 5.5. These figures, however, do not include the space between the TwinSpin® reduction gear and sealing flanges. The user secures complete sealing and addition of the lubricant to the free space. It is recommended to fill up to 70 - 80% of the free sealed volume. On the basis of a request by the user, SPINEA can offer a complete sealed and grease-filled solution.

E series - is not a completely sealed series of high precision reduction gears, normally filled with oil Castrol OPTIGEAR or Castrol TRIBOL GR 100-0 PD or TRIBOL GR. The user will fill the reduc-tion gear with grease after its complete sealing. It is recommended to fill up to 70 - 80% of the free sealed volume.

H series - is a completely sealed series of high precision reduction gears, normally filled with grease CASTROL TRIBOL GR TT 1 PD.

M series - is a completely sealed series of high precision reduction gears, normally filled with grease CASTROL TRIBOL GR TT 1 PD.

Tab. 5.5.a: Recommended lubricant quantities for the filling of the T, E, H, M series [cm³]				
Size	Volume of the lubricant			
TS 50	M series - 3			
TS 60	T series - 5			
TS 70	T, E, H series - 10			
TS 80	T, E series - 15			
TS 110	T, E, H series - 30			
TS 140	T, E series - 70			
TS 140	H series - 75			
TS 170	T, E series - 120			
TS 170	H series - 270			
TS 200	T, E series - 180			
TS 200	H series - 345			
TS 220	E series - 200			
TS 220	H series - 350			
TS 240	T series - 300			
TS 300	T series - 470			

Note

*The specified values represent 80% filling of the internal volume of the T series TwinSpin® high precision reduction gears. In the case of accessories of the reduction gear manufactured by the user, it is necessary to increase these values by the amount that represents 80% of the space between the reduction gear and the accessories. Lubrication levels in the horizontal and vertical positions are on Tab. 5.5.a.

**If other types of seals instead of rotary shaft seals are used on the reduction gear, or in the case of desired leakage of grease from the reduction gear, it is required from the customer to prescribe greasing intervals at his own risk or to consult the supplier for the confirmation of the warranty period.

When the reduction gear is in operation, the temperature of the lubricant should not exceed the maximum temperature defined by the lubricant manufacturer. Otherwise it is necessary to take into consideration the possible loss of lubricating properties of the used lubricant.

Tab. 5.5.d: Recommended lubricant quantities for the filling of the G series [cm³]							
Size	Volume of the lubricant						
TS 75	G series - 10						
TS 85	G series - 20						
TS 95	G series - 30						
TS 115	G series - 40						
TS 125	G series - 40						
TS 135	G series - 65						
TS 155	G series - 130						
TS 185	G series - 230						
TS 225	G series - 300						
TS 245	G series - 350						

Tab. 5.5.b: Range of use and lifetime of lubricants								
Lubricant	Туре	Range of use						
Castrol TRIBOL GR 100-0 PD	Grease	-35°C − +140°C						
Castrol TRIBOL GR TT 1 PD	Grease	-60°C - +120°C						
Castrol OPTIGEAR 150	Oil	-10°C - +90°C						

When these limits are exceeded, it is necessary to provide cooling or pre-heating of the reduction gears. In such cases please contact our sales department.

Attention: The temperatures stated in Tab. 5.5.b are the temperatures stated by the manufacturer for the determination of the lubricant lifetime in certain extreme conditions of its use, for the determination of re-lubrication intervals or its change. These temperatures are not identical with the temperatures inside or on the surface of the reduction gear. Since the thermal conditions inside the reduction gear and on its surface are less extreme in standard operation than the limit temperatures for the lubricant, the lifetime of the lubricant filling is higher than it its stated in the table.

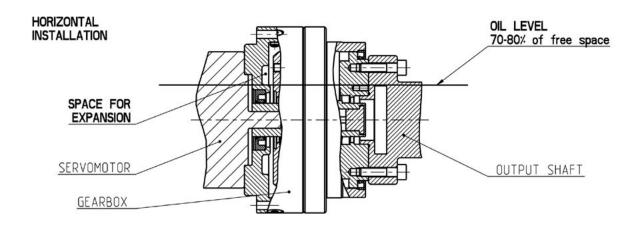
Cooling

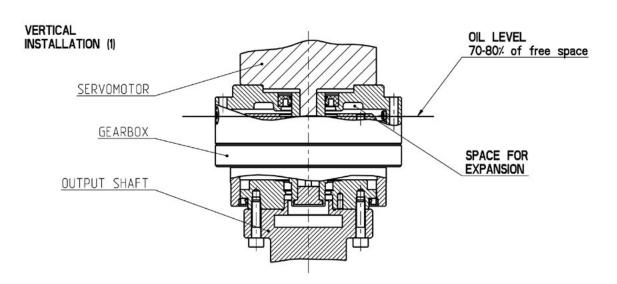
Cooling of the reduction gears is not necessary in most cases. But there are some cases when the temperature on the reduction gear surface becomes a limiting factor for a given duty cycle and relative ambient temperature. The reduction gear warming-up in extreme duty cycles should not be higher than by 40°C of the ambient temperature of 20°C - 25°C , whereas the general rule $n_s < n_{eff}$ (see Chapter 3) should be observed for extreme duty cycles.

Cooling is usually used in the following cases:

- a) special regulations applicable for explosive environments where a low temperature is requested
- b) ambient temperature higher than 40°C
- c) heat transmission between the electric motor and the reduction gear is too high

For the reason of the preservation of the proper functioning of the reduction gear (lubricant, sealing, pre-stress degree and material dilatation) during the guaranteed lifetime, the limit temperature expresses the limit temperature of the reduction gear, measured on its surface.


Tab. 5.5.c: Limit temperature of the reduction gear surface (measured on the gear surface)							
Lubricant	Reduction gear I	imit temperature					
LUDIICANI	TS50 - TS140	TS170 - TS300					
Castrol TRIBOL GR 100-0 PD	65℃	70℃					
Castrol TRIBOL GR TT 1 PD	65℃	70°C					
Castrol OPTIGEAR 150 65°C 70°C							


The stated temperatures represent a condition, when the reduction gear is not overloaded by speed with regard to lost motion. If the temperature is higher despite static (increasing of the surface for the heat dissipation) or dynamic (forced) cooling, it is necessary to decrease the speed or to use a reduction gear with higher LM (lost motion).

In such cases please contact our sales department for technical support.

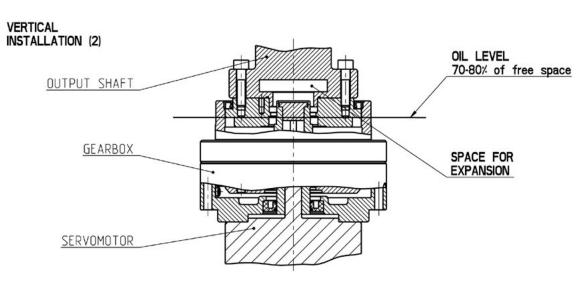


Fig. 5.5a: Lubricant levels in horizontal and vertical positions

Fig. 5.5b: Lubricant levels in horizontal and vertical positions

Pro-heating

Pre-heating is only used in very rare cases when the reduction gear is run with a very low duty factor at extreme ambient temperature variations or at very low ambient temperatures.

The reduction gear should normally be pre-heated in temperatures lower than -10°C. This is not necessary if the temperatures are constant and not so low and the speed values as well as the values of the torque to be transmitted are low, but in any case a special run-in and pre-heating cycle is needed. At such temperatures it is necessary to count with a higher start-up torque and thus with a more generous sizing of the drive motor.

In such cases please contact our sales department for technical support.

5.6 Thermal conditions

The TwinSpin® reduction gears are designed for the ambient temperature range of - 10° C to + 40° C. Applications for other thermal conditions should be consulted with the sales department or your local sales representative.

5.7 Motor flanges

Most motor adaptor flanges are available on request. Please contact the sales department or your local sales representative for further assistance.

6. General information

6.1 Maintenance

The reduction gear does not require any special maintenance. During its installation please observe the respective dimensional and positional tolerances of the centering diameters (Chapter 5.3). The reduction gear is a high-precision product, therefore it requires careful manipulation, installation, and demounting.

Any tampering with the reduction gear (disassembly, assembly) constitutes immediate loss of warranty. If a reduction gear fails due to a fault in its manufacturing or a material defect, please inform the manufacturer, who will carry out professional repair or replacement.

6.2 Delivery conditions

The reduction gear is delivered completely assembled, without fixing screws, filled with grease, and in a protective package. Not all series are fully sealed as a standard. Each reduction gear is identified with a type label, containing the following data:

- manufacturer
- · product type and size
- reduction ratio
- model
- serial number

6.3 Transport and storage

The reduction gears should be transported in closed transport vehicles, in containers secured against movement or overturning. The mode of transport should follow the mutual agreement between the customer and the supplier. In addition, the product must be protected against the elements, aggressive vapours, dust, and mechanical damage. The manufacturer recommends to store TwinSpin® reduction gears in the original transport package.

The standard packaging in the original package ensures corrosion protection for the period of 6 months during storage in closed rooms with the ambient temperature from 5°C to 25°C and the relative humidity up to 60%. After 6 months it is necessary to preserve the reduction gear again.

6.4 Warranty

 $The \ warranty\ is\ specified\ in\ the\ General\ Delivery\ Terms\ of\ SPINEA,\ s.r.o..\ For\ more\ information\ visit\ our\ website:\ www.spinea.com$

6.5 Final statement

Any design changes, modifications and improvements, aimed at increasing the technological level of the reduction gear, which, however, do not change the main technical parameters, installation and connection dimensions, may be performed by the manufacturer without prior consent from the customer. Any design changes and/or modifications affecting the critical properties and parameters of the reduction gear are subject to an approval procedure.

6.6 Cautions concerning the application of the TwinSpin® high precision reduction gear

If the end user of the product works in the military field or if the product is to be used for the manufacturing of weapons, the product may be subject to trade controls and export regulations. Before the exporting of the product therefore please check the export and trade control terms and conditions and take the required actions.

- If a fault or a malfunction of the product may directly endanger human lives or if the product is used in devices that may damage the human health (nuclear, space, healthcare facilities, various security systems, etc.), regular checks are essential. In such a case please contact our sales agent or our nearest business office.
- Although this product has been manufactured under strict quality control, if it is to be used in machines that, in the event
 of a malfunction, may seriously endanger human lives or damage equipment, it is essential to adopt appropriate safety
 measures.
- If this product is to be used in a special environment (clean rooms, food industry, etc.), please contact our sales agent or our nearest business office.

For more information visit our website: www.spinea.com

6.7 FAO

01. Q: Are reduction ratios between 20-30 possible with the TwinSpin® reduction gear?

A: Transmission ratios less then 30:1 can be discussed if requested. Ratios that are not offered as standard bear a higher risk of transmission inaccuracies. Consult the technical and delivery conditions with the sales department or our local sales representative.

O2. Q: What is the noise level of TwinSpin® during its operation?

A: TwinSpin® runs extremely smoothly. Reference noise measurements of the reduction gear mounted on a servomotor are available on request.

03. Q: Do you have any information about the temperature increase during the continuous running of TwinSpin® with the rated load?

A: Transmission ratios less then 30:1 can be discussed if requested. Ratios that are not offered as standard bear a higher risk of transmission inaccuracies. Consult the technical and delivery conditions with the sales department or our local sales representative.

04. Q: Does the input shaft have an axial play for the compensation of the heat growth from the connected servomotor?

A: There is an axial clearance at the input shaft of the reduction gear that allows heat dilatation. Please pay attention to the adjustment of clearance when interfacing the reduction gear with a servomotor (see Chapter 5).

05. Q: Why are there grease and oil lubrication options?

A: Grease is used for the standard applications. Oil is only used for special application requests where there is demand for very low viscous friction, for high-speed applications, for special conditions and users preferences (e.g. extremely cold environment for radar applications).

06. Q: Is it possible to use the TwinSpin® reduction gear independently of the installation position?

A: The installation position may be vertical or horizontal. The manufacturer provides engineering support, including assembly drawings, on request.

07. Q: What does "nominal lifetime L₁₀" mean?

A: The nominal lifetime L_{in} means the time in hours when up to 10% of a batch fails due to material fatigue.

08. Q: Which duty cycle (load) determines the rated torque and the corresponding nominal life?

A: The rated torque is a calculated value of the loading constant torque at the nominal constant input speed of the input shaft for the duty cycle when the calculated nominal lifetime is $L_{10} = 6.000$ hours and the duty factor ED = 1 (100%).

09. Q: Do you provide interface flanges and motor shaft connections for different servomotors?

A: Yes. We are able to provide you with the necessary technical support. Regarding the flange interfacing, we have a database of typical drawings of connecting couplings and interface flanges. We are able to prepare the assembly and detail drawings for customers, if they exactly specify the type and size of motor. We are also able to manufacture the motor flange and coupling on request.

10. Q: The pair of flanges rotate at a reduced speed with respect to the case. Is there any radial-axial clearance on the out put bearing with respect to the reduction grear case?

A: There are two options. The first one is no clearance and prestressed in both directions as necessary. The second one is the axial and radial clearance of up to 10 microns.

11. Q: Why is TwinSpin® characterized as a zero-backlash reduction gear?

A: TwinSpin® is a zero backlash reduction gear because there is no reversal clearance between the trochoid teeth of the gear wheels and the cylindrical rollers of the hollow gear wheels in the reduction gear case. This is reached by high-precision manufacturing of components and careful pairing during the assembly.

12. Q: Is TwinSpin® self-locking?

A: No. Thanks to very good efficiency there is no self-locking effect. For back-driving torque values see Chapter 3.13.

13. Q: Which part of TwinSpin® do you use to calculate the lifetime, i.e. which part of the reduction gear fails first?

A: The nominal lifetime is limited by the roller bearing between the eccentric shaft and the gearwheels.

7. **Drive**Spin® - **General information**

The DriveSpin® (DS) is the combination of the TwinSpin® high precision reduction gear, featuring excellent mechanical properties, and the AC servomotor in a compact unit. The excellent parameters are guaranteed by more than 20-year experience in the manuacture of reduction gears by SPINEA, s.r.o.

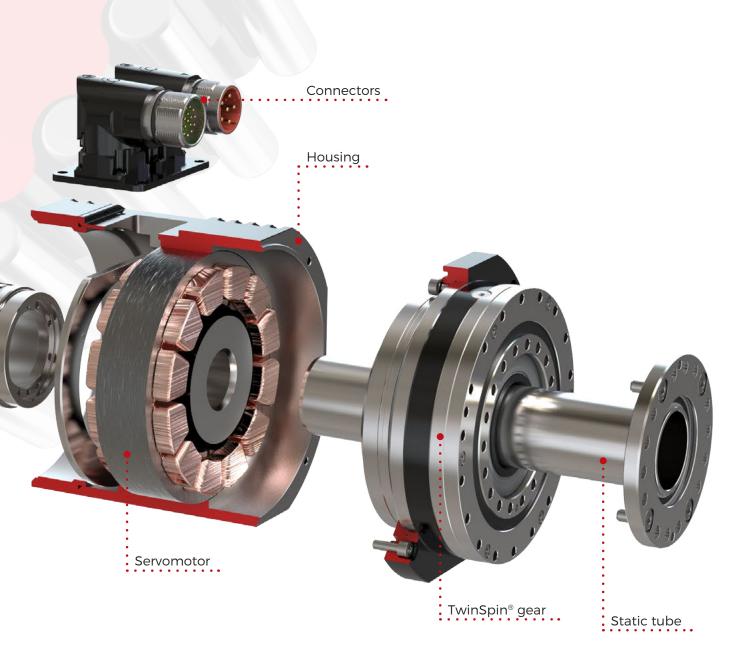


Fig. 7.a: DriveSpin® actuators components

The actuators feature:

- · high precision and accuracy
- · high tilting and torsional stiffness
- · low vibrations
- · compact dimensions
- · low weight
- · long service life
- · easy installation

Advantages

Actuators are sophisticated mechatronic drive nodes (devices) that combine a high-precision cycloid gearbox (bearing reducer), a servomotor, and feedback sensors. DriveSpin® electric actuators meet the most demanding customer requirements in all areas of industry. With optimum price/performance ratio, they reliably provide parameters such as high accuracy, high tilt, and torsional stiffness, low weight, compact design, low vibration, IP degree of protection, or a wide range of suitable technical solutions.

Uniquely balanced design

The DriveSpin® electric actuators feature a unique integration of a high-load-capacity reduction gear containing a unique reduction mechanism with an AC servomotor that meets even the most demanding requirements for dynamic performance.

Unique precision and accuracy

The DriveSpin® electric actuator, using a patented proprietary design of the bearing reduction gear, represents the most precise and accurate solution in its product category.

High moment capacity

The DriveSpin® actuators are outstanding for their high moment capacity, implemented in a zero-backlash design with an excellent power-to-size ratio and load capacity of the radial-axial bearings integrated in the DriveSpin® actuator.

Feedback sensor variability

The DriveSpin® electric actuators can be supplied with a wide range of feedback systems, such as EnDat®, HIPERFACE®, and Resolver.

Custom solution

Our technical and development department is prepared to adjust the DriveSpin® according to the customer specifications in terms of connectivity, mechanical design, motor characteristic, feedback systems as well as demands on the high IP protection class requirements.

Technical support

Our team of specialists is available for you to solve any issues. The use of first-class materials and the very process of the manufacturing of high precision DriveSpin® electric actuators are secured by ISO 9000 certificates.

DSH series

DSM series

DSF series

8. Drive Spin® series

Actuators known under the trademark DriveSpin® are most commonly used in automation, robotics, automotive industry as well as in general mechanical engineering, as part of various industrial equipment used for positioning in a variety of mechanical nodes.

The product portfolio is characterized by four basic type designs:

DS - Standard actuator

DSH - Hollow-shaft actuator (with hole)

DSM - Actuator in modular design

DSF - Flat, the shortest possible solution (reduced)

Product portfolio of DS/DSH/DSM/DSF actuators

						Size					
Type	050	060	070	085	095	110	115	125	140	155	170
DS (STANDARD)	✓	✓	✓	×	✓	✓	✓	×	✓	✓	×
DSM (MODULAR)	✓	×	✓	×	✓	✓	×	×	×	×	×
DSH (HOLLOWSHAFT)	✓	×	✓	✓	×	✓	✓	✓	×	✓	✓
DSF (FLAT)	✓	×	✓	×	✓	×	×	×	×	×	×

Rated output torque [Nm]

All SPINEA actuators are determined by unique ordering code. This code specifies all necessary parameters of the actuator, like actuator size, transmission rate, voltage ratings, feedback type etc. If you are unable to specify a certain part of the ordering code, please provide a letter in the sense of the general code. This is also the case if you need advice regarding special requirements of your application. In both cases, our technical support will contact you to achieve the optimal solution. We are ready to produce separate cabling for your application requirements. The possible configurations are based on Tab. 10.a: Ordering code for Cable

Note:

When selecting the position sensor of the DS xxx-abcde-fg-xy, you can choose one of the basic feedback types. When creating a business-technical offer, the feedback type will be replaced with a more specific position sensor number.

Ordering code example

DSH 115-103-4500B0-AH-00

00 : Special modification - Standard connector

A-: Wiring diagram - **Power connection**-H: Wiring diagram - **Signal connection**

4----: DC bus voltage - **560 V**

-5---: Temperature sensor - **PT 1000**

--0--- : Brake - **No**

---OB- : Feedback type - Absolute Singleturn Encoder Hiperface

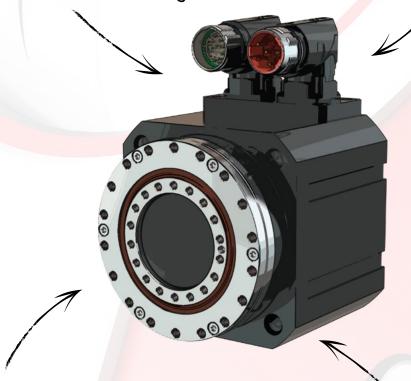
----0 : Type of electrical connection - **Straight connectors**

103: Reduction ratio - 103

115: Actuator size - **115**

DSH: DriveSpin® Hollowshaft

Tab. 8.a: DriveSp	in® ordering	specification	าร							
DS	070	-057	- 3		В	OA	4 -	A	J	- 00
•	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0			0 0 0 0
Name	Size	i	а	b	c	d	e	f	g	х у
_	Actuator		DC bus	Temperature		Foodback tons	Type of electrical	Wiring	liagram	Special
Туре	size	Ratio	voltage	sensor	Brake	Feedback type	connection	Power	Signal	modification
DS standard DSH hollowshaft	050	063	1: 24 VDC	1: PTC 111-K13	0: No	OA Resolver	0: Straight connectors	For more i		Terminal cable length
DSM modular DSF flat	0.501	0.47	3: 320 VDC 4: 560 VDC	5: PT 1000	B: Yes	OB Absolute Singleturn Encoder Hiperface	1: Connector on terminal cable directed upward 7)	see page 2	20 231	00 Standard
· · · · · · · · · · · · · · · · · ·	0601)	047	S: Special	S: Special upon request		OC Absolute Multiturn Encoder Hiperface	2: Hybrid straight connector			connector
	070	057, 075	upon request			OD Absolute Singleturn Encoder	3: Hybrid angled rotable connector			10 Standard cable length L=1m xy Custom design
	085 ²⁾	047. 085				EnDat OE Absolute Multiturn Encoder	4: Angled rotable connectors			Cable lengths and
					EnDat	EnDat	5: Terminal cable directed upward 7)			other modificati-
	095 5)	073, 095				OF Absolute Singleturn Encoder EnDat + sin/cos	6: Y-tec angular connector, rotable			ons. For more information contact
	110	067, 089, 119				OG Absolute Multiturn Encoder EnDat + sin/cos	7: Terminal cable directed forward 7)			manufacturer.
	115 ³⁾	055, 103				OH Incremental sin/cos Encoder + sin/cos Commutation	8: Terminal cable directed backward 7)			
	125 ²⁾	049, 099				OJ Incremental A/B/I Encoder + Block Commutation	B: Connector on terminal cable directed forward 7)			
	140 1)	069, 115				OK: Absolute Singleturn Encoder Hiperface DSL	C: Connector on terminal cable directed backward 7)			
						OL: Absolute Multiturn Encoder Hiperface DSL				
	155 ³⁾	063, 109, 133				OM: Absolute Singleturn Encoder				
	170 3)	069, 125				BiSS ON: Absolute Multiturn Encoder				
						BiSS				
						OP: Absolute Singleturn Encoder DRIVE-CLiQ				
						OQ: Absolute Multiturn Encoder DRIVE-CLiQ				
						OR: Absolute Multiturn Fanuc				
						OS: Absolute Singleturn Fanuc				


¹⁾ only DS ²⁾ only DSH ³⁾ only DS, DSH

⁴⁾ only DS, DSH, DSM ⁵⁾ only DS, DSM, DSF ⁷⁾ The standard length (L=1m)

Various combinations of voltages and motor feedback systems

Optimal price range

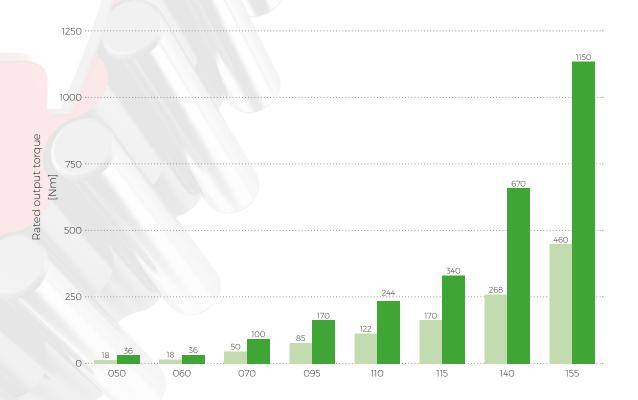
Very high power density

Zero-backlash reduction gear

DS series

STANDARD SOLUTION

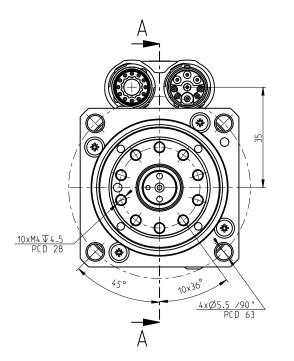
8.2 DS series

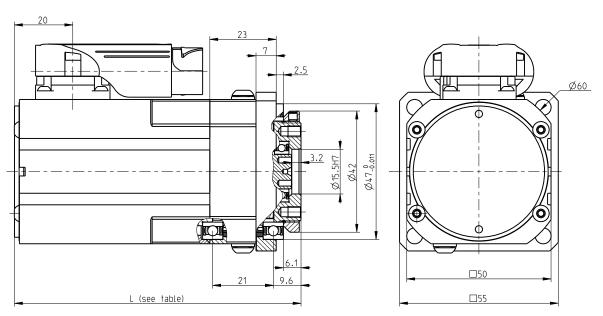

Advantages

- low lost motion
- low moment of inertia
- high reduction ratio
- high kinematic accuracy

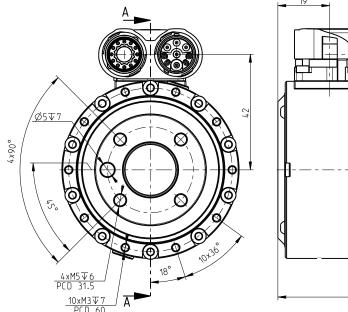
- high moment overload capacity
- high capacity of the integrated radial-axial output bearings
- · high dynammic performance

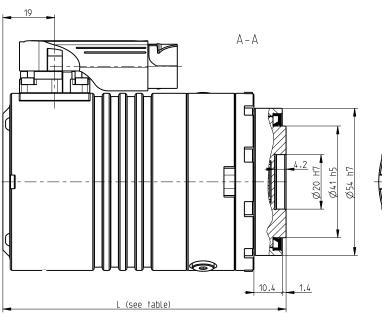
The **Drive**Spin® **DS** electric rotary actuators, as the basic type of actuators, provide rotary motion and the transfer of output torque with a high radial-axial load capacity and are the most accurate and precise solution in their category. The DS actuators are characterized by high dynamics, highly flexible drive solution, guaranteed by an AC servomotor, and high robustness and overload capacity of TwinSpin® reduction gear. DriveSpin® high variability of voltage, brake feedback and electrical connections will satisfly customer requirements in many cases. Rated output torque range of the DS is from 18 Nm to 460 Nm.

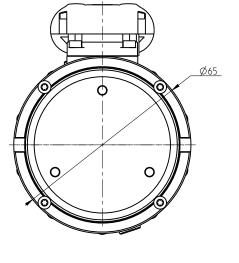

Tab. 8.2a: Rated o	Tab. 8.2a: Rated output torque								
Size		050	060	070	095	110	115	140	155
Rated output torque	T _r [Nm]	18	18	50	85	122	170	268	460
Acceleration/ braking output torque	T _{max} [Nm]	36	36	100	170	244	340	670	1150


DS 050 - i - abcde-fg-xy

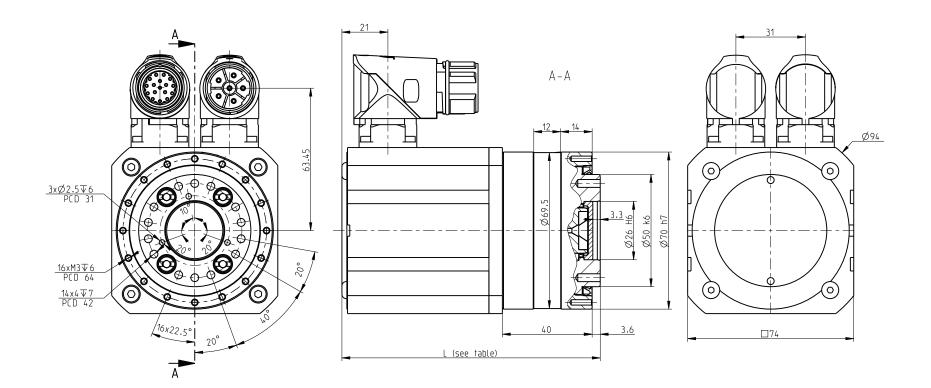
DS 050 - i - abcde-fg-xy




		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	99	0.9	135	1,4	
	OB,OC	107	1,2	138	1,4	
DS 050	OD,DE	106	1.2	133	1.3	
	OG	130	1.2	-	-	
	OK,OL	144	1.2	155	1.4	

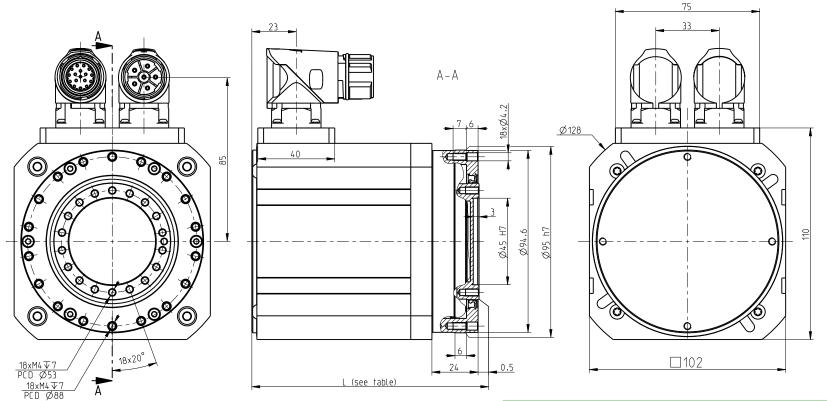


DS 060 - i - abcde-fg-xy


Without brake			With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *
	OA	104	1.3	119	1.4
DC 060	OB,OC	110	1,3	125	1,3
DS 060	OD,0E	115	1.3	130	1.4
	OJ	110	1.3	125	1.4

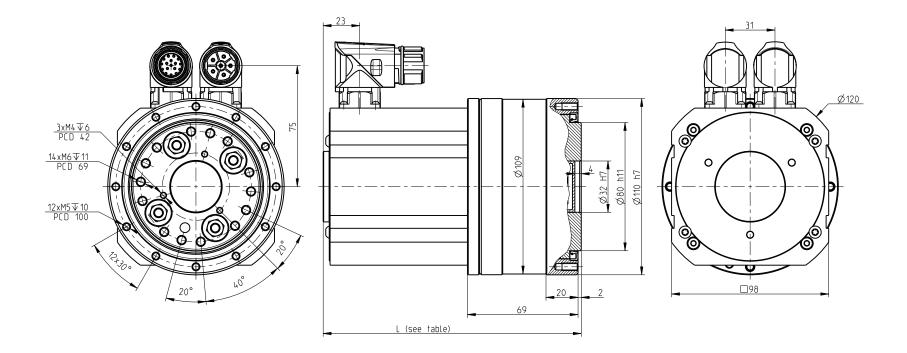
DS 070 - i - abcde-fg-xy

DS 070 - i - abcde-fg-xy


		Without	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	115	2,3	194	3,4	
	OB,OC	137	2,4	178	3,4	
DS 070	OD,0E	148	2,6	195	3,5	
	ОН	148	2.6	195	3.5	
	0P,0Q	-	-	137	2.4	

DS 095 - i - abcde-fg-xy

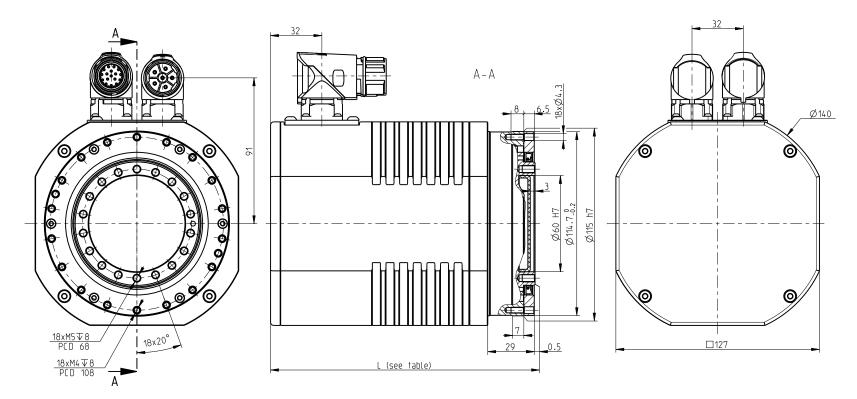
		Without	t brake	With k	orake
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *
	OA	118	4.9	138	5.8
	ОН	146	5.4	161	6.2
	OB,OC	139	5.2	149	5.9
DS 095	OD,OE	127	5.0	141	5.8
D2 032	OG,OH,OF	146	5.4	161	6.2
	OD,0E	127	5.0	141	5.8
	0P,0Q	139	5.2	149	5.9
	OK,OL	139	5.2	149	5.9


DS 095 - i - abcde-fg-xy

DS 110 - i - abcde-fg-xy

DriveSpir

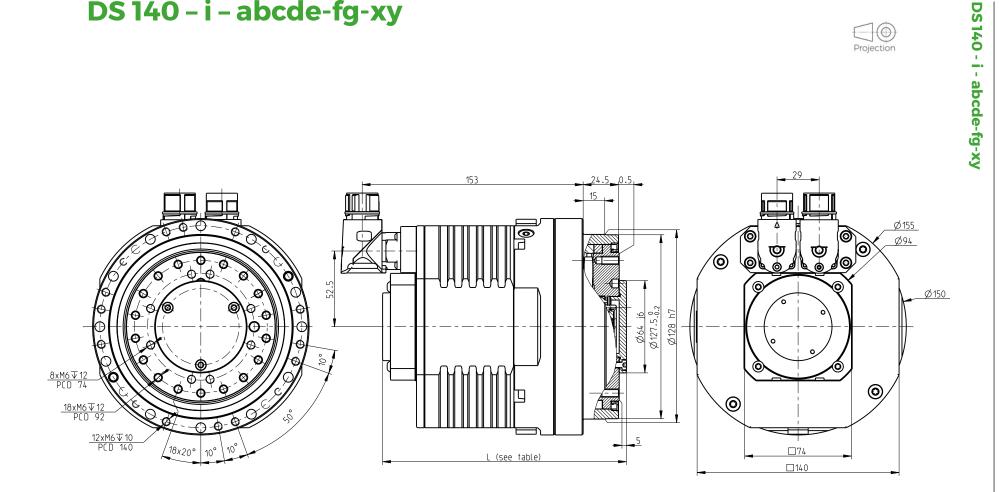
DS 110 - i - abcde-fg-xy



		Without	brake	With brake			
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *		
	OA	161	8.2	213	9.1		
DS 110	OB,OC	193	8.8	245	9.7		
טוו פע	OD,OE	202	8.6	242	9.6		
	ОН	202	8.6	242	9.6		

DS 115 - i - abcde-fg-xy

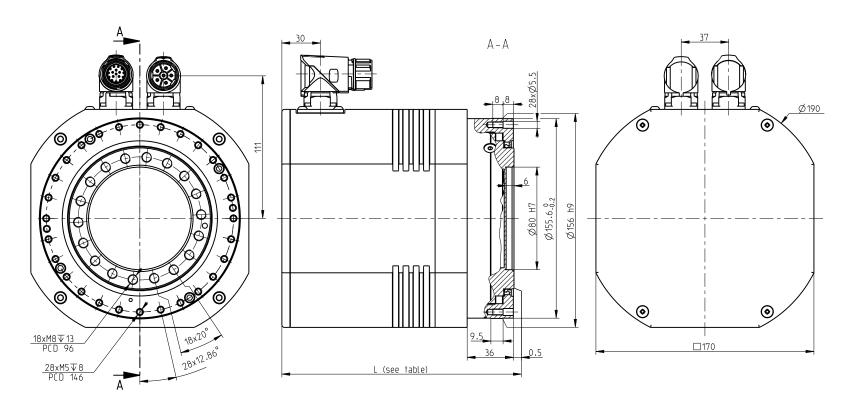
		Without	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	165	8.6	165	9.0	
	OB,OC	165	8.6	165	9.0	
	OD,0E	165	8.6	165	9.0	
DS 115	ОН	175	8.6	175	9.0	
	OJ	165	8.6	165	9.0	
	OK,OL	165	8.6	165	9.0	
	ON	165	8.6	165	9.0	



DS 115 - i - abcde-fg-xy

SPINEA

DS 140 - i - abcde-fg-xy


		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	148	11	181	12.1	
DC1/0	OB,OC	165	11	208	12.1	
DS 140	OD,0E	165	11	208	12.1	
	ОН	199	11	226	12.1	

DS 155 - i - abcde-fg-xy

DS 155 - i - abcde-fg-xy

		Without	brake	With brake			
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *		
	OA	181	14.2	181	16.2		
DS 155	OB,OC	181	14.4	181	16.2		
	OD,OE	181	14.4	181	16.2		
	ОН	181	14.7	181	16.5		
	OK,OL	181	14.6	181	16.4		
	ON	181	14.4	181	16.2		

Reduction Gear parameters		Tolerance		DS 050		
Reduction ratio	i			63		
Rated output torque	T _r [Nm]			18		
Acceleration/braking output torque	T _{max} [Nm]		36			
Rated input speed	n _r [rpm]		2 000			
Maximum allowable input speed ⁹⁾	n _{max} [rpm]		5 000			
Allowable moment ²⁾³⁾	M _{cmax} [Nm]		44			
Tilting stiffness 1)6)	M _t [Nm/arcmin]			4		
Torsional stiffness ¹⁾⁷⁾	k _t [Nm/arcmin]			2.5		
Lost motion	LM [arcmin]			< 1.5		
Hysteresis	H [arcmin]		< 1.5			
Rated radial force ²⁾	F _{rR} [kN]			1.44 8)		
Maximum axial force ²⁾⁴⁾	F _{a max} [kN]		1.9			
Gear lubrication			Grease Castrol TRIBOL GR TT 1 PD			
Reduction gear limit temperature	[°C]		65 °C			
Standard ambient temperature range	[°C]		-10 °C to +40 °C			
Motor parameters						
DC BUS voltage	U _{dc} [V _{dc}]	+/- 10%	24	320	560	
Motor rated speed	n _n [rpm]		3 500	3 500	3 500	
Motor rated torque	M _n [Nm]	+/- 10%	0.23	0.23	0.23	
Motor rated current	I _n [A _{rms}]		7.1	0.58	0.58	
Motor stall torque	M _o [Nm]	+/- 10%	0.24	0.24	0.24	
Motor stall current	I _o [A _{rms}]		7.4	0.6	0.6	
Motor peak torque	M _{max} [Nm]	+/- 10%	1	1	1	
Motor peak current	I _{max} [A]		30.8	2,5	2.5	
Motor back-EMF constant	K _E [V _{peak} /krpm]	+/- 10%	2.7	36	36	
Motor torque constant	$K_{T} [Nm/A_{ms}]$	+/- 10%	0.032	0.4	0.4	
Terminal resistance (L-L)	$R_{2ph}\left[\Omega ight]$	+/- 10%	0.2	36	36	
Terminal inductance (L-L)	L _{2ph} [mH]	+/- 20%	0.2	36	36	
Number of poles	2p		6	6	6	
Electromagnetic brake DC supply	$[V_{dc}]$		24. Special			
Electromagnetic brake torque at input	[Nm]			0.4		
Protection class			IP 64			
Motor Insulation class			F			
Paint				RAL 9005		
Motor number of phases				3		
				star-configuratic		

- 1) Mean statistical value
- 2) Load at output speed 32 rpm for size 050, other sizes at 15 rpm
- 3) Moment M_c max at F_a=0. If F_a≠0 see Glossary
- 4) Axial force F_a max for M_c=0 (In case of size 050 also F_c=0 condition has to be fullfiled). If M_c≠0 see Glossary 5) 3 900 rpm for ratio 67; 4 500 rpm for ratios 89, 119
- 6) The parameter depends on the version of high precision reduction gear.
- 7) The parameter depends on the version, ratio and lost motion of the high precision reduction gear.
- 8) For size 050 this is value of MAXIMUM RADIAL FORCE F_{rmax} for a2=0; Fa=0 and at 32 rpm output speed. For a2>0; Fa=0 at 32 rpm output speed F_{rmax} =44/(a2+0.0305). a2 represents the distance of the radial force centre from the front of the output flange in meters see Glossary 9) Instantaneous speed peak that may occur within the working cycle. Note please the temperature on the gear case that should not exceed
- significantly 60°C 10) 4 500 rpm for ratio 73 ; 4 800 rpm for ratio 95
- 11) 4 000 rpm for ratio 55; 4 500 rpm for ratio 103
- 12) 3 400 rpm for ratio 63; 3 800 rpm for ratio 109; 4 200 rpm for ratio 133

Tab. 8.2	Tab. 8.2b: DS series technical data table - continued									
	DS 060			DS 070		DS 095				
	47		57, 75			73, 95				
	18		50			85				
	36		100			170				
	2 000			2 000		2 000				
	5 000			5 000			4 500 / 4 800 10)			
	52			142			410			
	19			35			120			
	3.3			7			15			
	< 1			< 1.5			< 7			
	<1			< 1.5			< 1			
	2.4			2.8			3.5			
	4.6			4.1		11.1				
Gr	ease Castrol TRIBOL GI	R TT 1 PD	Grease C	astrol TRIBOL GF	R TT 1 PD	Grease Castrol TRIBOL GR TT 1 PD				
	60 °C			65 °C			60 °C			
	-10 °C to +40 °C			-10 °C to +40 °C			-10 °C to +40 °C			
24	320	560	24	320	560	24	320	560		
3 00	0 3 000	3 000	2 500	4 500	4 500	4 000	4 000	4 000		
0.4	0.4	0.4	0.88	0.76	0.76	1.4	1.4	1.4		
8.3	0.63	0.63	13	1.2	0.7	27	5.6	3.1		
0.45	0.45	0.45	0.9	0.9	0.9	1.6	1.6	1.6		
9.34	0.71	0.71	13.3	1.42	0.83	31	6.4	3.5		
1.3	1.3	1.3	3	3	3	5.5	5.5	5.5		
27	2	2	44.3	4.7	2.8	106.1	22	12.1		
4.4	58	58	5.7	68.3	105.6	4.4	25	47		
0.0		0.63	0.0677	0.63	1.09	0.052	0.25	0.46		
0.2		32	0.13	17	40.5	0.052	1.2	4.36		
0.3		51	0.25	34.4	87	0.11	2.84	8.71		
6	6	6	10	10	10	10	10	10		
	24, Special			24, Special			24, Special			
	4.5			4.5			2			
	IP 64			IP 64			IP 64			
	F			F			F			
	RAL 9005			RAL 9005		RAL 9005				
	3	,		3	1		3	1		
	Y(star-configuratio	n)	Υ(star-configuratio	ion) Y(star-confi			n)		

IMPORTANT NOTES:

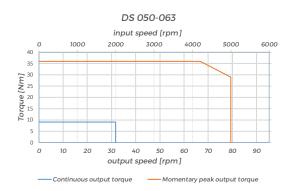
- Load values in the table are valid for the nominal lifetime L_{10} = 6 000 hours excluding DS 060, DS 095, DS 115 and DS 155 where values are valid for L_{10} = 12 000 hours. Service life for average torque T_a and average speed na other than rated n_r , T_r can be recalculated. Please contact manufacturer with estimated duty cycle.
- High precision reduction gears are preffered for intermittent duty cycles (S3-S8): the output speed in aplications is inverted-variable. The S1 continuous duty cycle needs to be consulted with manufacturer
- Please consult the maximum speed in duty cycle with the manufacturer
- The values in the table refer to the ambient temperature of 20 $^{\circ}\text{C}$ to 25 $^{\circ}\text{C}$
- · For ambient temperatures lower than -10°C pre-heating might be considered please consult manufacturer

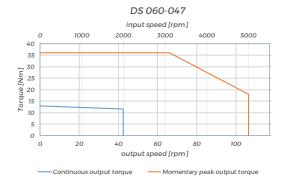
Reduction Gear parameters		Tolerance		DS 110		
Reduction ratio	i			67, 89, 119		
Rated output torque	T _r [Nm]			122		
Acceleration/braking output torque	T _{max} [Nm]		244			
Rated input speed	n _r [rpm]		2 000			
Maximum allowable input speed ⁹⁾	n _{max} [rpm]		3 900 / 4 500 ⁵⁾			
Allowable moment ^{2 3)}	M _{cmax} [Nm]		740			
Filting stiffness ¹⁾⁽⁶⁾	M _t [Nm/arcmin]			150		
Forsional stiffness 1171	k _t [Nm/arcmin]			22		
Lost motion	LM [arcmin]			< 1		
Hysteresis	H [arcmin]			< 1		
Rated radial force ²⁾	F _{rR} [kN]			9.3		
Maximum axial force ²⁾⁴⁾	F _{a max} [kN]		13.1			
Gear lubrication			Grease Castrol TRIBOL GR TT 1 PD			
Reduction gear limit temperature	[°C]		65 °C			
Standard ambient temperature range	[°C]		-10 °C to +40 °C			
Motor parameters						
DC BUS voltage	$U_{dc}\left[V_{dc}\right]$	+/- 10%	24	320	560	
Motor rated speed	n _n [rpm]		2 500	3 000	3 000	
Motor rated torque	M _n [Nm]	+/- 10%	3.4	3.2	3.2	
Motor rated current	$I_n [A_{rms}]$		37	4.9	2.8	
Motor stall torque	M _o [Nm]	+/- 10%	3.8	3.8	3.8	
Motor stall current	I _o [A _{rms}]		41	6	3	
Motor peak torque	M _{max} [Nm]	+/- 10%	11	11	11	
Motor peak current	I _{max} [A]		120	17	10	
Motor back-EMF constant	K _E [V _{peak} /krpm]	+/- 10%	8	57	103	
Motor torque constant	$K_{T} [Nm/A_{rms}]$	+/- 10%	0.09	0.65	1.14	
Terminal resistance (L-L)	$R_{2ph}\left[\Omega\right]$	+/- 10%	0.027	1.4	4.5	
Terminal inductance (L-L)	L _{2ph} [mH]	+/- 20%	0.15	7.4	24	
Number of poles	2p		10	10	10	
Electromagnetic brake DC supply	$[V_{dc}]$			24, Special		
Electromagnetic brake torque at input	[Nm]			4.5		
Protection class			IP 64			
Motor Insulation class				F		
Paint				RAL 9005		
Motor number of phases				3		

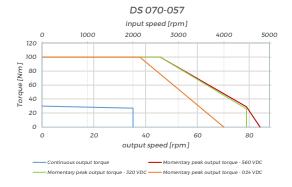
- 1) Mean statistical value
- 2) Load at output speed 32 rpm for size 050, other sizes at 15 rpm
- 3) Moment M_c max at F_a=0. If F_a≠0 see Glossary
- 4) Axial force F_a max for M_c=0 (In case of size 050 also F_c=0 condition has to be fullfiled). If M_c≠0 see Glossary 5) 3 900 rpm for ratio 67; 4 500 rpm for ratios 89, 119
- 6) The parameter depends on the version of high precision reduction gear.
- 7) The parameter depends on the version, ratio and lost motion of the high precision reduction gear.
- 8) For size 050 this is value of MAXIMUM RADIAL FORCE F_{rmax} for a2=0; Fa=0 and at 32 rpm output speed. For a2>0; Fa=0 at 32 rpm output speed F_{rmax} =44/(a2+0.0305). a2 represents the distance of the radial force centre from the front of the output flange in meters see Glossary
- 9) Instantaneous speed peak that may occur within the working cycle. Note please the temperature on the gear case that should not exceed significantly 60°C
- 10) 4 500 rpm for ratio 73 ; 4 800 rpm for ratio 95
- 11) 4 000 rpm for ratio 55; 4 500 rpm for ratio 103
- 12) 3 400 rpm for ratio 63; 3 800 rpm for ratio 109; 4 200 rpm for ratio 133

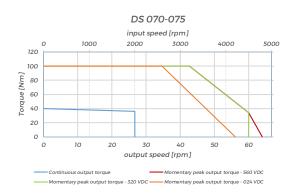
Tab. 8.2b: DS series technical data table - continued									
	DS 115			DS 140		DS 155			
	55, 103			69, 115		63, 109, 133			
	170			268		460			
	340			670		1 150			
	2 000			2 000			2 000		
	4 000 / 4 500 11)			4 500		3 40	00 / 3 800 / 4 20	O ¹²⁾	
	550			1 160			1 640		
	220			380			900		
	32			62			87		
	< 0.5			< 1			< 0.5		
	< 1			< 1			< 1		
	4			11.5			8.3		
	12			17			26		
Grease C	Castrol TRIBOL GF	RTT1PD	Grease C	astrol TRIBOL GF	R TT 1 PD	Grease Castrol TRIBOL GR TT 1 PD			
	60 °C			65 °C			60 °C		
	-10 °C to +40 °C		-10 °C to +40 °C			-10 °C to +40 °C			
24	320	560	24	320	560	24	320	560	
3 000	4 000	4 000	4 000	4 000	4 000		4 000	4 000	
4	4	4	4	4	4		5	5	
84	6.33	3.8	74.1	5.6	3.2		10	6	
4	4	4	4.5	4.5	4.5		11	11	
84	6.33	3.8	83.3	6.3	3.6		21.9	6	
10	10	10	13.5	13.5	13.5	On	23	23	
231	15.82	10.45	250	18.8	11	request	45.9	27.6	
4.1	54.1	93.3	4.76	63	111		44	77	
0.05	0.63	1.05	0.054	0.72	1.26		0.5	0.83	
0.011	0.83	2.3	0.0055	1	3		0.15	0.4	
0.02	3.65	10.5	0.04	7	22		0.57	1.7	
10	10	10	10	10	10		24	24	
	24, Special			24, Special			24, Special		
	4.5			4.5			2		
	IP 64			IP 64		IP 64			
	F			F		F			
	RAL 9005			RAL 9005		RAL 9005			
	3			3			3		
Y(star-configuration)			Y(star-configuration)			Y(star-configuration)			

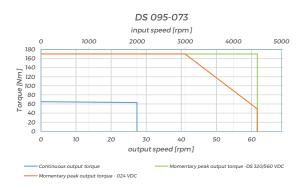
IMPORTANT NOTES:

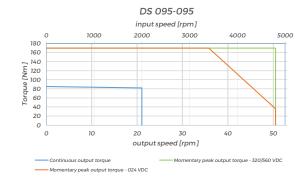

- Load values in the table are valid for the nominal lifetime L_{10} = 6 000 hours excluding DS 060, DS 095, DS 115 and DS 155 where values are valid for L_{10} = 12 000 hours. Service life for average torque T_a and average speed na other than rated n_r , T_r can be recalculated. Please contact manufacturer with estimated duty cycle.
- High precision reduction gears are preffered for intermittent duty cycles (S3-S8): the output speed in aplications is inverted-variable. The S1 continuous duty cycle needs to be consulted with manufacturer
- Please consult the maximum speed in duty cycle with the manufacturer
- The values in the table refer to the ambient temperature of 20 $^{\circ}\text{C}$ to 25 $^{\circ}\text{C}$
- · For ambient temperatures lower than -10°C pre-heating might be considered please consult manufacturer


Tab. 8.2c: Inertia at input (DS actuator without brake)										
Feedback type (d)	J _{w/o brake}	DS 050	DS 060	DS 070	DS 095	DS 110	DS 115	DS 140	DS 155	
OA	10 ⁻⁴ kgm²	0.080	0.073	0.509	1.657	1.825	5.803	5.745	16.069	
OB	10 ⁻⁴ kgm²	0.061	0.073	0.488	1.646	1.814	5.784	5.736	16.039	
OC	10 ⁻⁴ kgm²	0.061	0.073	0.488	1.646	1.814	5.784	5.736	16.039	
OD	10 ⁻⁴ kgm²	0.062	0.074	0.504	1.640	1.830	5.780	5.728	16.085	
OE	10 ⁻⁴ kgm²	0.062	0.074	0.504	1.640	1.830	5.780	5.728	16.085	
OF	10 ⁻⁴ kgm²	-	-	-	1.661	-	-	-	-	
OG	10 ⁻⁴ kgm²	0.061	-	-	1.661	-	-	-	-	
OH	10 ⁻⁴ kgm²	-	-	0.504	1.661	1.830	5.903	5.770	16.085	
OJ	10 ⁻⁴ kgm²	-	0.073	-	-	-	5.903	-	-	
OK	10 ⁻⁴ kgm²	0.060	-	-	1.640	-	5.788	-	16.039	
OL	10 ⁻⁴ kgm²	0.060	-	-	1.640	-	5.788	-	16.039	
ON	10 ⁻⁴ kgm²	-	-	-	-	-	5.795	-	16.082	
OP	10 ⁻⁴ kgm²	-	-	0.484	1.640	-	-	-	-	
0Q	10 ⁻⁴ kgm²	-	-	0.484	1.640	-	-	-	-	
OR	10 ⁻⁴ kgm²	-	-	-	-	-	-	-	-	
OS	10 ⁻⁴ kgm²	-	-	-	-	-	-	-	-	

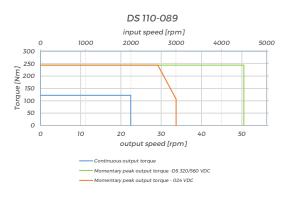

Tab. 8.2d: Inertia at input (DS actuator with brake)										
Feedback type (d)	J _{w/brake}	DS 050	DS 060	DS 070	DS 095	DS 110	DS 115	DS 140	DS 155	
OA	10 ⁻⁴ kgm²	0.121	0.083	0.878	1.707	2.193	5.926	12.100	16.210	
OB	10 ⁻⁴ kgm²	0.101	0.081	0.856	1.695	2.182	5.907	12.120	16.230	
OC	10 ⁻⁴ kgm²	0.101	0.081	0.856	1.695	2.182	5.907	12.120	16.230	
0D	10 ⁻⁴ kgm²	0.101	0.082	0.871	1.689	2.196	5.903	12.100	16.210	
OE	10 ⁻⁴ kgm²	0.101	0.082	0.871	1.689	2.196	5.903	12.100	16.210	
OF	10 ⁻⁴ kgm²	-	-	-	1.711	-	-	-	-	
OG	10 ⁻⁴ kgm²	-	-	-	1.711	-	-	-	-	
OH	10 ⁻⁴ kgm²	-	-	0.871	1.711	2.196	5.926	12.100	16.450	
OJ	10 ⁻⁴ kgm²	-	0.081	-	-	-	5.926	-	-	
OK	10 ⁻⁴ kgm²	0.100	-	-	1.690	-	5.901	-	16.360	
OL	10 ⁻⁴ kgm²	0.100	-	-	1.690	-	5.901	-	16.360	
ON	10 ⁻⁴ kgm²	-	-	-		-	5.918	-	16.180	
OP	10 ⁻⁴ kgm²	-	-	-	1.690	-	-	-	-	
0Q	10 ⁻⁴ kgm²	-	-	-	1.690	-	-	-	-	
OR	10 ⁻⁴ kgm²	-	-	-		-	-	-	-	
OS	10 ⁻⁴ kgm²	-	-	-		-	-	-	-	

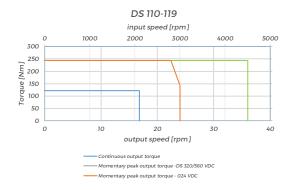


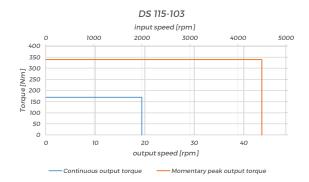


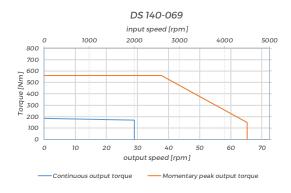

.....

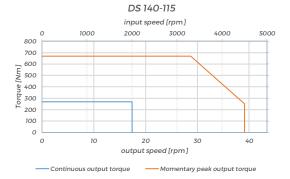


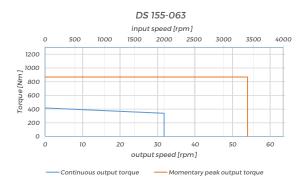


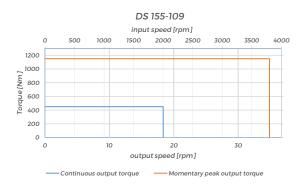


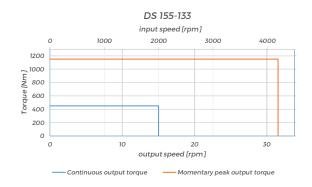












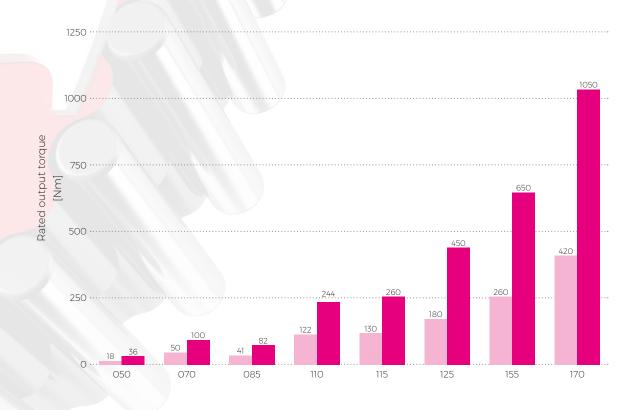


DSH series

WHEN AIR IS BETTER THAN STEEL

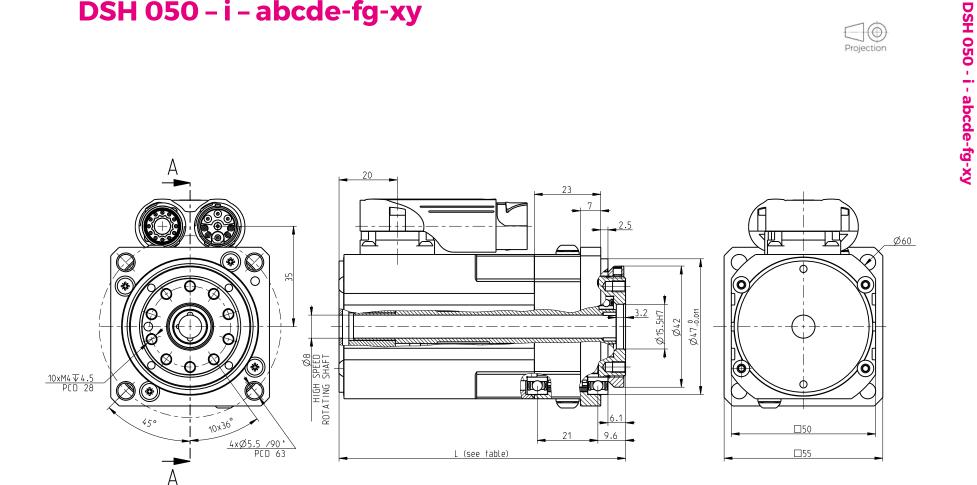
8.3 DSH series

Advantages


- low lost motion
- · low moment of inertia
- high reduction ratio
- high kinematic accuracy

- high moment overload capacity
- high capacity of the integrated radial-axial output bearings
- high dynammic performance

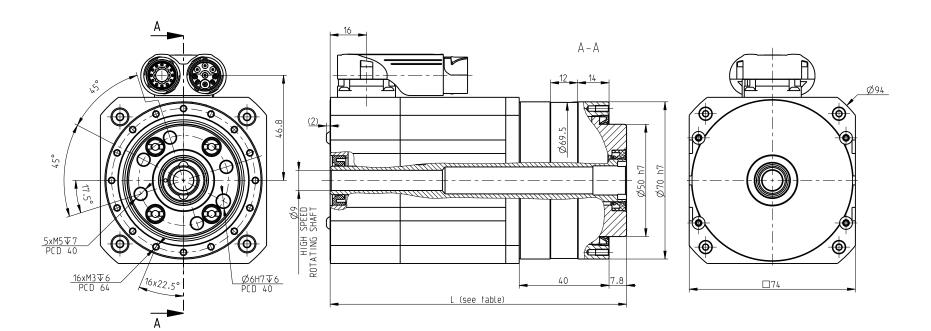
The **Drive**Spin® **DSH** electric actuators are characterized by the short axial length and by the possibility to use a through hole for routing cables, pipes, and drive shafts. Fully sealed compact actuators equipped with zero-backlash reduction gears have high power density, large hole inner diameter, from 8 to 40mm. Excellent positioning accuracy and positioning repeatability. DSH maintaining radial-axial and torque load capacity and are characteristic with high overload capacity of reduction gear and of AC servomotor, featuring high dynamics. The voltage and feedback variability will widely satisfy all of customers requirements. This allows even demanding tasks such as exact positioning or fast movement of heavy loads to be performed with a high degree of repetitive accuracy. Rated output torque is from 18 Nm to 260 Nm.



Tab. 8.3a: Rated output torque										
Size		050	070	085	110	115	125	155	170	
Rated output torque	T _r [Nm]	18	50	41	122	130	180	260	420	
Acceleration/ braking output torque	T _{max} [NM]	36	100	82	244	260	450	650	1050	

SPINEA

DSH 050 - i - abcde-fg-xy

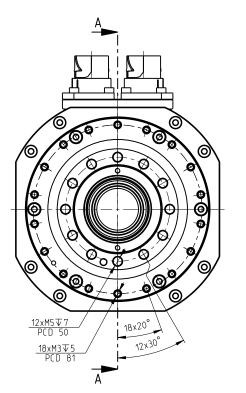

		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
DSH 050	OA	107	1.2	-	-	

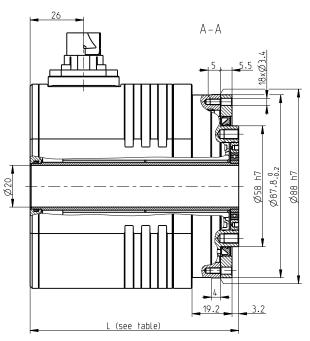
183

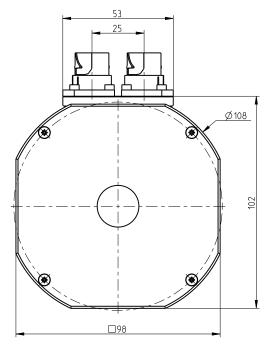
DSH 070 - i - abcde-fg-xy

DSH 070 - i - abcde-fg-xy

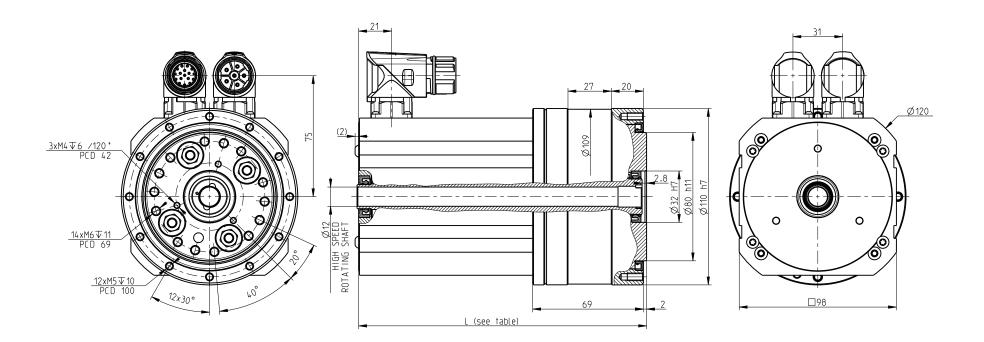
Hollowshaft rotates at motor speed


		Without	brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
DCII 070	OA	153	2.3			
DSH 070	OB,OC	133	2.1			


SPINEA

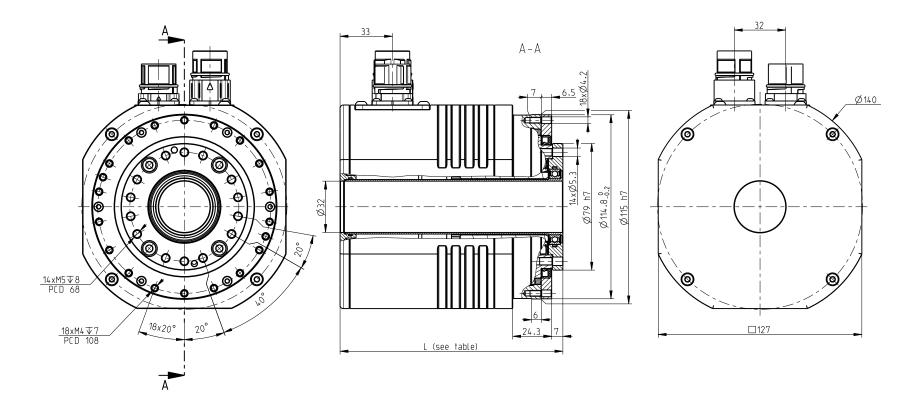

DSH 085 - i - abcde-fg-xy

DSH 085 - i - abcde-fg-xy



		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 Weight m [mm] [kg] *		Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	120	4.2	150	4.6	
DSH 085	OB,OC	120	3.8	150	4.4	
D2H 092	OD,0E	120	3.7	150	4.5	
	ON	120	3.5	150	4.3	

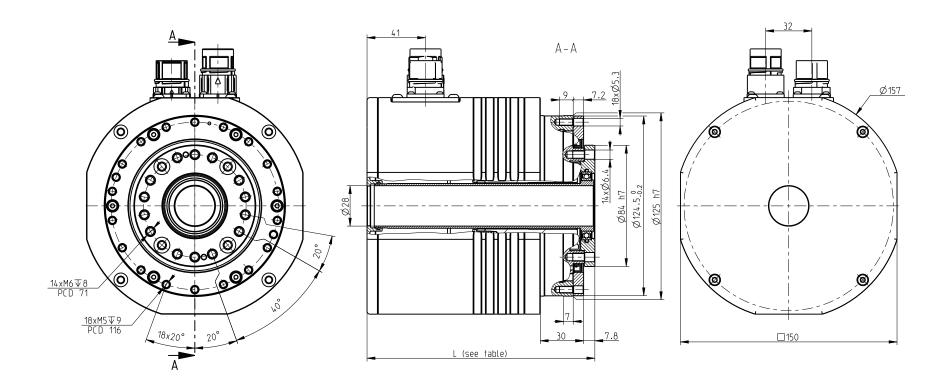
DSH 110 - i - abcde-fg-xy


Hollowshaft	rotates	at	motor	speed

		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
DSH 110	OA	181	8.7			

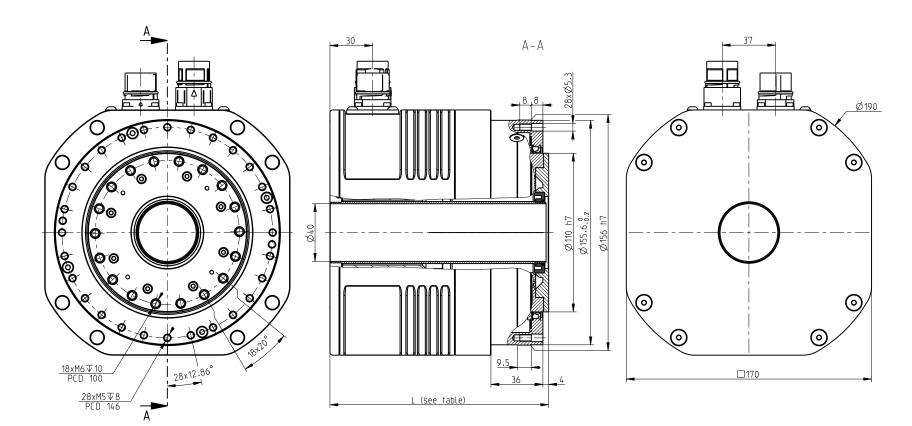
DSH 115 - i - abcde-fg-xy

DSH 115 - i - abcde-fg-xy


		Without	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 Weight m [mm] [kg] *		Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	144	7.3	168	8.3	
Dellar	OB	139	6.5	165	7.5	
DSH 115	OD,OE	139	6.5	165	7.5	
	OF	139	6.5	165	7.5	

DSH 125 - i - abcde-fg-xy

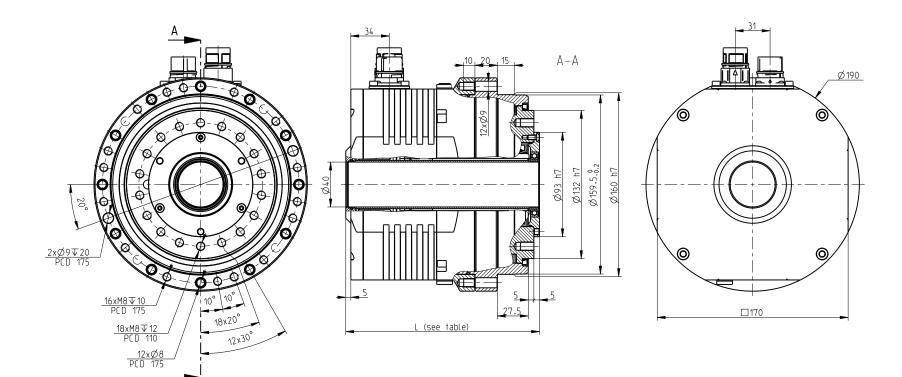
		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	158	11,2	186	12.9	
DCUIDE	OB,OC	158	10.4	186	11.7	
DSH 125	OD,0E	158	10.4	186	11.7	
	ON	158	9.0	186	10.3	



DSH 155 - i - abcde-fg-xy

DriveSpin

DSH 155 - i - abcde-fg-xy


		Without	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	152	13.1	175	14.3	
DCUIEF	OB	152	11.8	175	13.0	
DSH 155	OD,OE	152	11.6	175	13.7	
	OF	152	11.6s	175	13.7	

DSH 170 - i - abcde-fg-xy

		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	188	26.0	235	27.0	
DC11170	OB,OC	172	24.5	219	25.5	
DSH 170	OD,0E	172	24.0	219	25.0	
	ON	172	22.0	219	23.0	

Reduction Gear parameters		Tolerance		DSH 050		
Reduction ratio	i		63			
Hollowshaft diameter	Ød [mm]			8 14)		
Rated output torque	T _r [Nm]			18		
Acceleration/braking output torque	T _{max} [Nm]			36		
Rated input speed	n _r [rpm]			2 000		
Maximum allowable input speed ⁹⁾	n _{max} [rpm]			5 000		
Allowable moment ²⁾³⁾	M _{cmax} [Nm]			44		
Tilting stiffness 1)6)	M _t [Nm/arcmin]			4		
Torsional stiffness 1)7)	k _t [Nm/arcmin]			2.5		
Lost motion	LM [arcmin]			< 1.5		
Hysteresis	H [arcmin]			< 1.5		
Rated radial force ²⁾	F _{rR} [kN]			1.44 8)		
Maximum axial force ²⁾⁴⁾	F _{a max} [kN]			1.9		
Gear lubrication			Grease Castrol TRIBOL GR TT 1 PD			
Reduction gear limit temperature	[°C]		65 °C			
Standard ambient temperature range	[°C]		-10 °C to +40 °C			
Motor parameters						
DC BUS voltage	U _{dc} [V _{dc}]	+/- 10%	24	320	560	
Motor rated speed	n _n [rpm]		3 500	3 500	3 500	
Motor rated torque	M _n [Nm]	+/- 10%	0.23	0.23	0.23	
Motor rated current	$I_n [A_{rms}]$		7.1	0.58	0.58	
Motor stall torque	M _o [Nm]	+/- 10%	0.24	0.24	0.24	
Motor stall current	I _o [A _{rms}]		7.4	0.6	0.6	
Motor peak torque	M _{max} [Nm]	+/- 10%	1	Ī	1	
Motor peak current	I _{max} [A]		30.8	2.5	2.5	
Motor back-EMF constant	K _E [V _{peak} /krpm]	+/- 10%	2.7	36	36	
Motor torque constant	K _T [Nm/A _{rms}]	+/- 10%	0.032	0.4	0.4	
Terminal resistance (L-L)	$R_{2ph}[\Omega]$	+/- 10%	0.2	36	36	
Terminal inductance (L-L)	L _{2ph} [mH]	+/- 20%	0.2	36	36	
Number of poles	2p		6	6	6	
Electromagnetic brake DC supply	$[V_{dc}]$			24. Special		
Electromagnetic brake torque at input	[Nm]		0.4			
Protection class				IP 64		
Motor Insulation class			5. F			
Paint				RAL 9005		
Motor number of phases				3		
Motor type of connection				(star-configuratio	`	

- 1) Mean statistical value
- 2) Load at output speed 32 rpm for size 050, other sizes at 15 rpm
- Moment M, max at F = 0. If F = 40 see Glossary
 Axial force F = max for M = 0 (In case of size 050 also F = 0 condition has to be fullfilled). If M = 40 see Glossary
 3 900 rpm for ratio 67: 4 500 rpm for ratios 89, 119
- 6) The parameter depends on the version of high precision reduction gear.
- 7) The parameter depends on the version, ratio and lost motion of the high precision reduction gear.
- 8) For size 050 this is value of MAXIMUM RADIAL FORCE F_{rmax} for a2=0; Fa=0 and at 32 rpm output speed. For a2>0; Fa=0 at 32 rpm output speed F_{rmax} =44/(a2+0.0305). a2 represents the distance of the radial force centre from the front of the output flange in meters see Glossary
- 9) Instantaneous speed peak that may occur within the working cycle. Note please the temperature on the gear case that should not exceed significantly 60°C
- 10) 3 200 rpm for ratio 69 ; 3 700 rpm for ratio 125
- 11) 3 800 rpm for ratio 47 : 4 500 rpm for ratio 85
- 12) 2 500 rpm for ratio 55; 3 400 for ratio 103
- 13) 2 400 rpm for ratio 49 ; 3 800 rpm for ratio 99
- 14) Hollowshaft rotates at motor speed
- 1) Hollowshaft rotates at motor speed

Tab. 8.3b: DS	5H series techni	ical data table	- continued						
	DSH 070			DSH 085			DSH 110		
	57, 75			47. 85			67. 89. 119		
	9 or 12 ¹⁴⁾			14 or 20			12 14)		
	50			41			122		
	100			82			244		
	2 000			2 000			2000		
	5 000			3 800 / 4 500 11)			3900 / 4500 ⁵⁾		
	142			220			740		
	35			85			150		
	7			10			22		
	< 1.5			< 1			< 1		
	< 1.5			<1			< 1		
	2.8			2			9.3		
	4.1			6					
Grease (Grease Castrol TRIBOL GR TT 1 PD			astrol TRIBOL G	R TT 1 PD	Grease C	astrol TRIBOL GI	R TT 1 PD	
	65 ℃			60 °C			65 °C		
	-10 °C to +40 °C		-10 °C to +40 °C			-10 °C to +40 °C			
24	320	560	24	320	560	24	320	560	
2 500	4 500	4 500	2 500	3 000	3 000	2 500	3 000	3 000	
0.88	0.76	0.76	2.1	2.1	2.1	3.4	3.2	3.2	
13	1.2	0.7	42	4.2	2.1	37	4.9	2.8	
0.9	0.9	0.9	2.3	2.3	2.3	3.8	3.8	3.8	
13.3	1.42	0.83	46	4.6	2.3	41	6	3	
3	3	3	5.8	5.8	5.8	11	11	11	
44.3	4.7	2.8	130	13.03	6.52	120	17	10	
5.7	68.3	105.6	4.37	49.1	87.4	8	57	103	
0.0677	0.63	1.09	0.05	0.5	1	0.09	0.65	1.14	
0.13	17	40.5	0.017	2.1	6.7	0.027	1.4	4.5	
0.25	34.4	87	0.04	5.2	17	0.15	7.4	24	
10	10	10	16	16	16	10	10	10	
	24. Special			24. Special			24. Special		
	4.5			1.5			4.5		
	IP 64			IP 64			IP 64		
	F			F			F		
	RAL 9005			RAL 9005			RAL 9005		
	3			3			3		
Y (star-configuration)			Y (9	star-configuarati	on)	Y (:	star-configuarati	on)	

IMPORTANT NOTES:

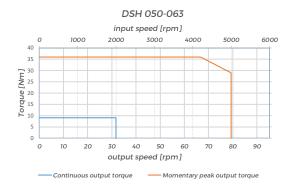
- Load values in the table are valid for the nominal lifetime L_{10} = 6 000 hours excluding DSH 085, DSH 115, DSH 125 and DSH 155 where values are valid for L_{10} = 12 000 hours. Service life for average torque T_a and average speed na other than rated n_r , T_r can be recalculated. Please contact manufacturer with estimated duty cycle.
- High precision reduction gears are preffered for intermittent duty cycles (S3-S8); the output speed in aplications is inverted-variable. The S1 continuous duty cycle needs to be consulted with manufacturer
 Please consult the maximum speed in duty cycle with the manufacturer
- The values in the table refer to the ambient temperature of 20 $^{\circ}\text{C}$ to 25 $^{\circ}\text{C}$
- For ambient temperatures lower than -10°C pre-heating might be considered please consult manufacturer

Reduction Gear parameters		Tolerance		DSH 115	
Reduction ratio	i			55, 103	
Hollowshaft diameter	Ød [mm]		32		
Rated output torque	T, [Nm]			130	
Acceleration/braking output torque	T _{max} [Nm]			260	
Rated input speed	n, [rpm]			2 000	
Maximum allowable input speed ⁹⁾	n _{max} [rpm]			2 500 / 3 400 14)	
Allowable moment ^{2]3)}	M _{cmax} [Nm]			550	
Filting stiffness ¹⁾⁶⁾	M, [Nm/arcmin]			220	
Torsional stiffness ¹⁾⁷⁾	k, [Nm/arcmin]			23	
Lost motion	LM [arcmin]			< 1	
Hysteresis	H [arcmin]			< 1	
Rated radial force ²⁾	F _{rp} [kN]			4	
Maximum axial force ^{2]4]}	F _{a max} [kN]			12.5	
Gear lubrication	a max		Grease Castrol TRIBOL GR TT 1 PD		
Reduction gear limit temperature	[°C]		60 °C		
Standard ambient temperature range	[°C]		-10 °C to +40 °C		
Motor parameters					
DC BUS voltage	$U_{dc}\left[V_{dc}\right]$	+/- 10%	24	320	560
Motor rated speed	n _n [rpm]		3 500	3 500	3 500
Motor rated torque	M _n [Nm]	+/- 10%	2.9	2.9	2.9
Motor rated current	$I_n [A_{rms}]$		46	3.5	2
Motor stall torque	M _o [Nm]	+/- 10%	3	3	3
Motor stall current	I _o [A _{ms}]		47.6	3.6	2
Motor peak torque	M _{max} [Nm]	+/- 10%	8.5	8.5	8.5
Motor peak current	I _{max} [A]		135	10.1	5.8
Motor back-EMF constant	K _E [V _{peak} /krpm]	+/- 10%	5.6	75	131
Motor torque constant	K _T [Nm/A _{rms}]	+/- 10%	0.06	0.84	1.47
Terminal resistance (L-L)	$R_{2ph}[\Omega]$	+/- 10%	0.011	2	6
ērminal inductance (L-L)	L _{2ph} [mH]	+/- 20%	0.03	5	16
Number of poles	2p		20	20	20
Electromagnetic brake DC supply	[V _{dc}]			24. Special	
Electromagnetic brake torque at input	[Nm]			5	
Protection class				IP 64	
Motor Insulation class				F	
Paint				RAL 9005	
Motor number of phases				3	
Motor type of connection			Y (5	star-configuaration	on)

- 1) Mean statistical value
- 2) Load at output speed 32 rpm for size 050, other sizes at 15 rpm
- Moment M, max at F = 0. If F = 40 see Glossary
 Axial force F = max for M = 0 (In case of size 050 also F = 0 condition has to be fullfilled). If M = 40 see Glossary
 3 900 rpm for ratio 67: 4 500 rpm for ratios 89, 119
- 6) The parameter depends on the version of high precision reduction gear.
- 7) The parameter depends on the version, ratio and lost motion of the high precision reduction gear.
- 8) For size 050 this is value of MAXIMUM RADIAL FORCE F_{rmax} for a2=0; Fa=0 and at 32 rpm output speed. For a2>0; Fa=0 at 32 rpm output speed F_{rmax} =44/(a2+0.0305). a2 represents the distance of the radial force centre from the front of the output flange in meters see Glossary
- 9) Instantaneous speed peak that may occur within the working cycle. Note please the temperature on the gear case that should not exceed significantly 60°C
- 10) 3 200 rpm for ratio 69 ; 3 700 rpm for ratio 125
- 11) 3 800 rpm for ratio 47 : 4 500 rpm for ratio 85
- 12) 2 500 rpm for ratio 55; 3 400 for ratio 103
- 13) 2 400 rpm for ratio 49 ; 3 800 rpm for ratio 99
- 14) Hollowshaft rotates at motor speed

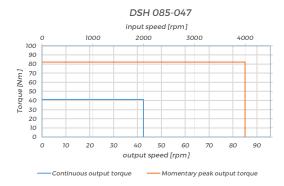
Tab. 8.3b: DS	H series techni	cal data table	- continued						
	DSH 125			DSH 155			DSH 170		
	49, 99			109			69, 125		
	27			40		40			
	180			260		420			
	450			650			1 050		
	2 000		2 000				2 000		
	2 400 / 3 800 14)			3 000			3 200 / 3 700 14)		
	880			1 640			2 000		
	280			900			1 100		
	29			67			110		
	< 1			< 1			< 1		
	< 1			< 1			< 7		
	4.4			8			19.2		
	13.8			26			27.9		
Grease C	Grease Castrol TRIBOL GR TT 1 PD			Grease Castrol TRIBOL GR TT 1 PD			Grease Castrol TRIBOL GR TT 1 PD		
	60 °C			60 °C			65 °C		
	-10 °C to +40 °C		-10 °C to +40 °C				-10 °C to +40 °C		
24	320	560	24	320	560	24	320	560	
4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	
4	4	4	3.8	3.8	3.8	5	5	5	
74.1	5.6	3.2	67.2	5	3	133	10	6	
4.5	4.5	4.5	5	5	5	11	11	11	
83.3	6.3	3.6	88	6.6	4	293	21.9	6	
13.5	13.5	13.5	16	16	16	23	23	23	
250	18.8	11	283	21.2	14	612	45.9	27.6	
4.76	63	111	5	67	112	3.3	44	77	
0.054	0.72	1.26	0.057	0.75	1.27	0.038	0.5	0.83	
0.0055	1	3.3	0.005	1	2.5	0.00085	0.15	0.4	
0.04	7	22	0.014	2	7	0.0032	0.57	1.7	
10	10	10	24	24	24	24	24	24	
	24, Special			24, Special			24, Special		
	5			5			19		
	IP 64		IP 64				IP 64		
	F		F			F			
	RAL 9005		RAL 9005				RAL 9005		
	3			3			3		
Υ	(star-configuratio	n)	Υ	star-configuration	on)	Υ (:	star-configuratio	on)	

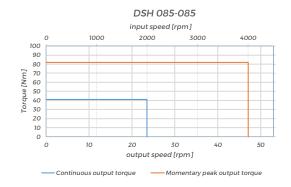
IMPORTANT NOTES:

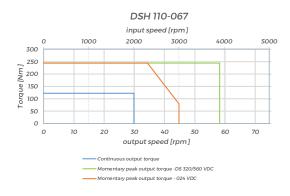

- Load values in the table are valid for the nominal lifetime L_{10} = 6 000 hours excluding DSH 085, DSH 115, DSH 125 and DSH 155 where values are valid for L_{10} = 12 000 hours. Service life for average torque T_a and average speed na other than rated n_r . T_r can be recalculated. Please contact manufacturer with estimated duty cycle.
- High precision reduction gears are preffered for intermittent duty cycles (S3-S8): the output speed in aplications is inverted-variable. The S1 continuous duty cycle needs to be consulted with manufacturer
- Please consult the maximum speed in duty cycle with the manufacturer
- The values in the table refer to the ambient temperature of 20 $^{\circ}\text{C}$ to 25 $^{\circ}\text{C}$
- For ambient temperatures lower than -10°C pre-heating might be considered please consult manufacturer

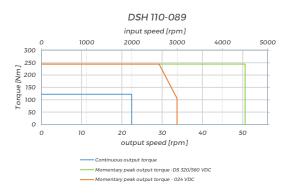


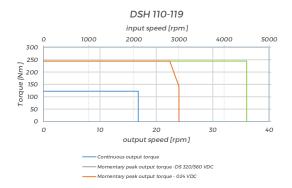

Tab. 8.3c: Inertia a	Tab. 8.3c: Inertia at input (DSH actuator without brake)									
Feedback type (d)	J _{w/o brake}	DSH 050	DSH 070	DSH 085	DSH 110	DSH 115	DSH 125	DSH 155	DSH 170	
OA	10 ⁻⁴ kgm²	0.110	0.630	1.960	2.040	13.977	14.516	19.340	6.370	
OB	10 ⁻⁴ kgm²	-	0.483	1.840	-	8.757	9.336	10.600	6.300	
OC	10 ⁻⁴ kgm²	-	0.483	1.840	-	8.757	9.336	10.600	6.300	
OD	10 ⁻⁴ kgm²	-	-	2.360	-	9.097	9.636	10.460	6.280	
OE	10 ⁻⁴ kgm²	-	-	2.360	-	9.097	9.636	10.460	6.280	
OF	10 ⁻⁴ kgm²	-	-	-	-	9.097	9.636	10.460	-	
OJ	10 ⁻⁴ kgm²	0.091	-	-	-	-	-	-	-	
ON	10 ⁻⁴ kgm²	0.105	-	2.060	-	-	10.624	-	6.270	

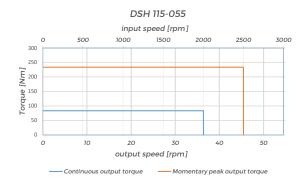

Tab. 8.3d: Inertia at input (DSH actuator with brake)									
Feedback type (d)	J _{w/o brake}	DSH 050	DSH 070	DSH 085	DSH 110	DSH 115	DSH 125	DSH 155	DSH 170
OA	10 ⁻⁴ kgm²	0.143	-	2.380	-	15.080	15.937	24.428	6.430
OB	10 ⁻⁴ kgm²	-	-	2.200	-	9.860	15.757	15.249	6.430
OC	10 ⁻⁴ kgm²	-	-	2.200	-	9.860	10.757	15.249	6.430
0D	10 ⁻⁴ kgm²	-	-	2.810	-	10.200	11.057	15.550	6.430
OE	10 ⁻⁴ kgm²	-	-	2.810	-	10.200	11.057	15.550	6.430
OF	10 ⁻⁴ kgm²	-	-	-	-	10.200	11.057	15.550	-
OJ	10 ⁻⁴ kgm²	0.125	-	-	-	-	-	-	-
ON	10 ⁻⁴ kgm²	0.138	-	2.520	-	-	12.044	-	6.420

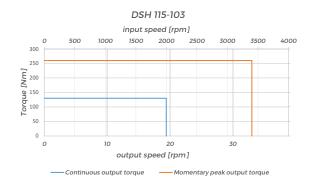


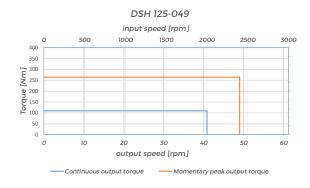


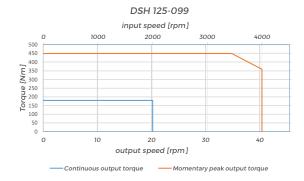


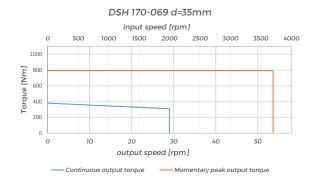


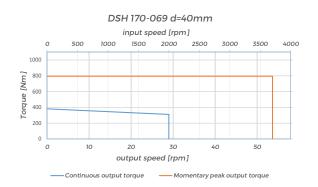


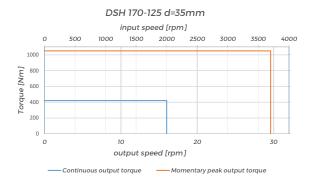


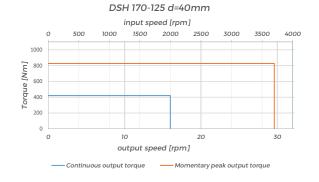




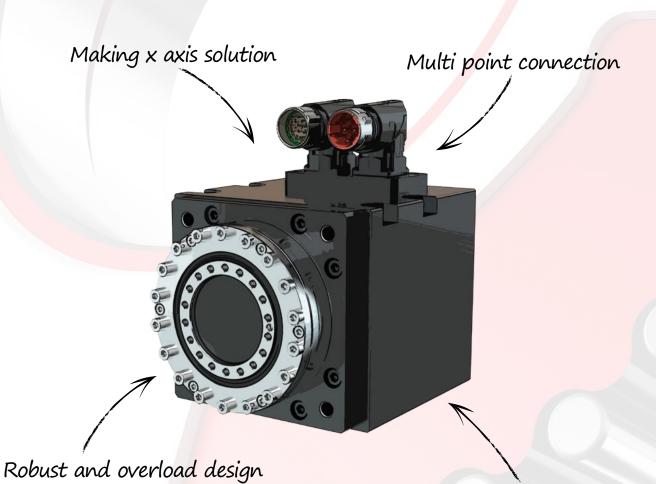








.....



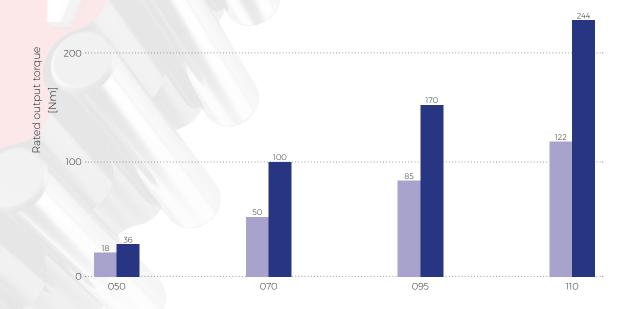
Any design of the body

DSM series

MOUNT IT YOUR WAY

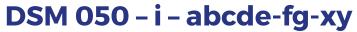
8.4 DSM series

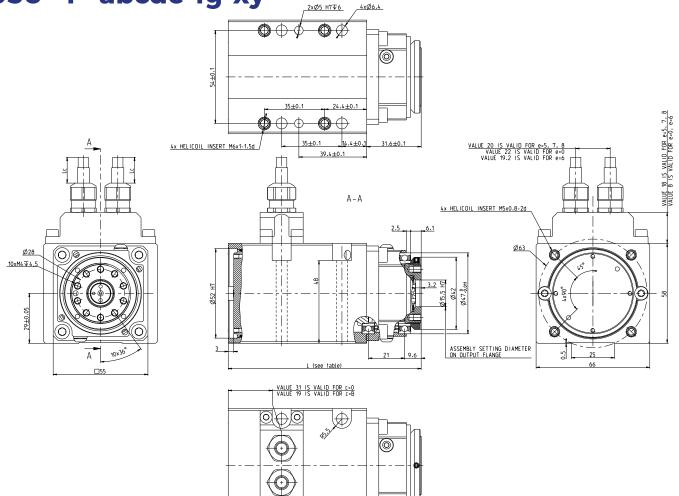
Advantages


- low lost motion
- low moment of inertia
- high reduction ratio
- high kinematic accuracy

- high moment overload capacity
- high capacity of the integrated radial-axial output bearings
- high dynammic performance

The **Drive**Spin® **DSM** modular rotary positioning modules provide controlled rotary motion and transfer of torque with a high positioning accuracy and precision. The output flange of the module allows capturing both radial and axial forces. The modules feature a special design, which allows versatile connections, also without additional devices. Actuators can be combined in many ways using the modular system. The simple design integration ability and small dimensions allow creating kinematic assemblies from DSM modules for end effectors, but also for additional devices and positioners. The selection of a module size depends on the required load-carrying capacity and the number of degrees of freedom of the motion axis. The DSM Series is characterized by simple and quick assembly and reduces overall cost. Compact design ensures optimum mounting options and application possibilities, even in confined installation spaces. These actuators are used in applications with request of high torque density, precision and dynamics. Rated output torque is from 18 Nm to 122 Nm.

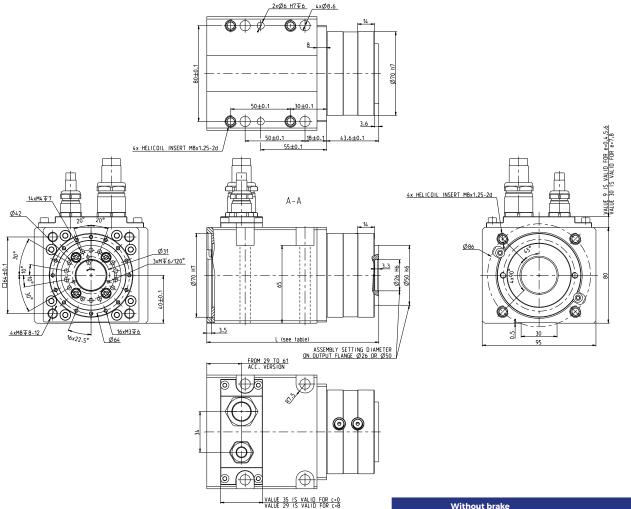




Tab. 8.4a: Rated output torque									
Size		050	070	095	110				
Rated output torque	T _r [Nm]	18	50	85	122				
Acceleration/ braking output torque	T _{max} [Nm]	36	100	170	244				

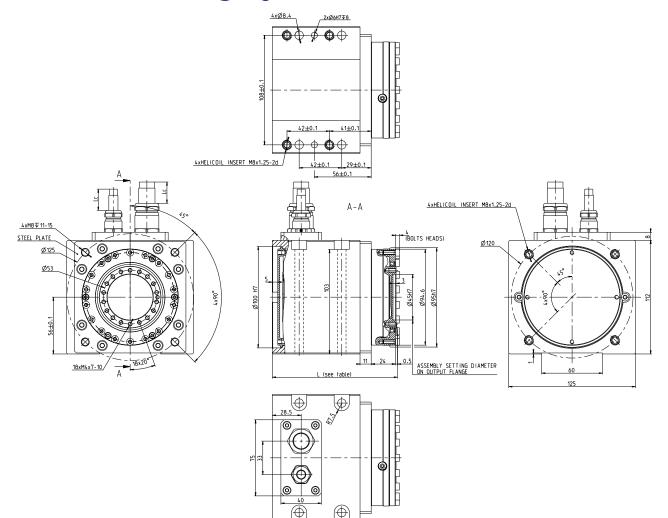
DSM 050 - i - abcde-fg-xy

Projection



25		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	112	1.4	142	1.6	
DCM OFO	OB,OC	112	1.4	142	1.6	
DSM 050	OD,OE	112	1.4	142	1.6	
	OK,OL	119	1.4	152	1.6	

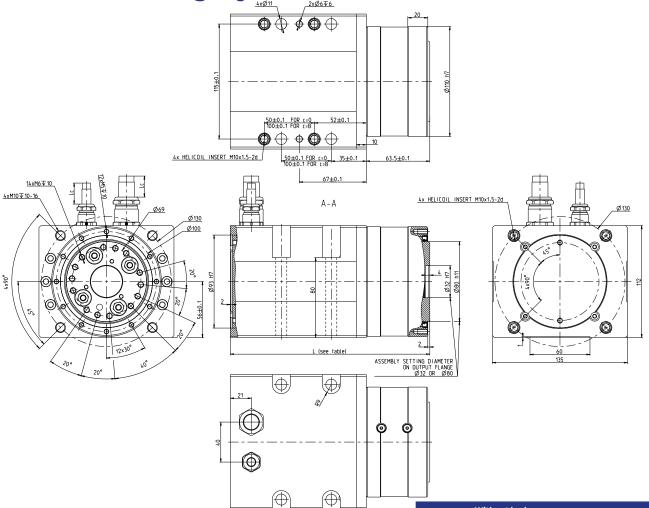
DSM 070 - i - abcde-fg-xy



VALUE 29 IS	VALID FOR C=B	Without	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	144	3.2	177	4.2	
DCM 070	OB,OC	144	3.2	177	4.8	
DSM 070	OD,0E	144	3.1	177	4.1	
	ОН	154	3.4	199	4.6	

DSM 095 - i - abcde-fg-xy

DSM 095 - i - abcde-fg-xy



		Without	brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	122	5.9	145	6.5	
DSM 095	OB,OC	122	6.1	145	6.6	
D2MI 032	OD,OE	122	6.0	145	6.7	
	OG,OH,OF	142	6.6	165	7.3	

DSM 110 - i - abcde-fg-xy

_			Without	brake	With brake		
	Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
		OA	200	10.5	252	12.4	
	DC14330	OB,OC	200	10.5	252	12.4	
	DSM 110	OD,0E	200	10.6	252	12.5	
		ОН	200	10.6	252	12.5	

Reduction Gear parameters		Tolerance		DSM 050	
Reduction ratio	i			63	
Rated output torque	T _r [Nm]		18		
Acceleration/braking output torque	T _{max} [Nm]			36	
Rated input speed	n _r [rpm]			2 000	
Maximum allowable input speed 9)	n _{max} [rpm]			5 000	
Allowable moment ²⁾³⁾	M _{cmax} [Nm]			44	
Tilting stiffness 1)6)	M _t [Nm/arcmin]			4	
Torsional stiffness 1)7)	k _t [Nm/arcmin]			2.5	
Lost motion	LM [arcmin]			< 1.5	
Hysteresis	H [arcmin]			< 1.5	
Rated radial force ²⁾	F _{rR} [kN]			1.44 8)	
Maximum axial force ²⁾⁴⁾	F _{a max} [kN]			1.9	
Gear lubrication			Grease C	astrol TRIBOL G	R TT 1 PD
Reduction gear limit temperature	[°C]		65 °C		
Standard ambient temperature range	[°C]		-10 °C to +40 °C		
Motor parameters					
DC BUS voltage	$U_{dc}\left[V_{dc}\right]$	+/- 10%	24	320	560
Motor rated speed	n _n [rpm]		3 500	3 500	3 500
Motor rated torque	M _n [Nm]	+/- 10%	0.23	0.23	0.23
Motor rated current	$I_n [A_{rms}]$		7.1	0.58	0.3
Motor stall torque	M _o [Nm]	+/- 10%	0.24	0.24	0.24
Motor stall current	I _o [A _{ms}]		7.4	0.6	0.3
Motor peak torque	M _{max} [Nm]	+/- 10%	1	1	1
Motor peak current	I _{max} [A]		30.8	2,5	1,25
Motor back-EMF constant	K _E [V _{peak} /krpm]	+/- 10%	2.7	36	67
Motor torque constant	$K_{T} [Nm/A_{rms}]$	+/- 10%	0.032	0.4	0.8
Terminal resistance (L-L)	$R_{2ph}\left[\Omega ight]$	+/- 10%	0.2	36	122
Terminal inductance (L-L)	L _{2ph} [mH]	+/- 20%	0.2	36	130
Number of poles	2р		6	6	6
Electromagnetic brake DC supply	$[V_{dc}]$			24, Special	
Electromagnetic brake torque at input	[Nm]			0.4	
Protection class				IP 64	
Motor Insulation class				F	
Paint				RAL 9005	
Motor number of phases			3		
Motor type of connection			Y(star-configuration)		

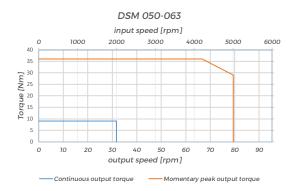
- 1) Mean statistical value
- 2) Load at output speed 32 rpm for size 050, other sizes at 15 rpm
- 3) Moment M_c max at F_a=0. If F_a≠0 see Glossary
- 4) Axial force F_a max for M_c=0 (In case of size 050 also F_c=0 condition has to be fullfiled). If M_c≠0 see Glossary 5) 3 900 rpm for ratio 67; 4 500 rpm for ratios 89, 119

- 6) The parameter depends on the version of high precision reduction gear.
 7) The parameter depends on the version, ratio and lost motion of the high precision reduction gear.
- 8) For size 050 this is value of MAXIMUM RADIAL FORCE F_{rmax} for a2=0; Fa=0 and at 32 rpm output speed. For a2>0; Fa=0 at 32 rpm output speed F_{rmax} =44/(a2+0.0305). a2 represents the distance of the radial force centre from the front of the output flange in meters see Glossary
- 9) Instantaneous speed peak that may occur within the working cycle. Note please the temperature on the gear case that should not exceed significantly 60°C
- 10) 4 500 rpm for ratio 73 ; 4 800 rpm for ratio 95

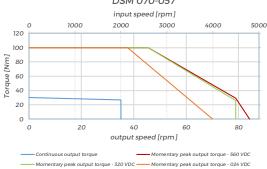
Tab. 8.4b: DS	M series techn	ical data table	- continued						
	DSM 070			DSM 095			DSM 110		
	57, 75			73, 95			67, 89, 119		
	50			85		122			
	100		170			244			
	2 000			2 000		2 000			
	5 000			4 500 / 4 800 10)			3 900 / 4 500 5)		
	142			410			740		
	35			120			150		
	7			15			22		
	< 1.5			< 1			< 1		
	< 1.5			< 1			< 1		
	2.8			3.5			9.3		
	4.1			11.1			13.1		
Grease C	Castrol TRIBOL GF	R TT 1 PD	Grease C	astrol TRIBOL GF	R TT 1 PD	Grease C	astrol TRIBOL G	R TT 1 PD	
	65 °C			60 ℃			65 °C		
	-10 °C to +40 °C			-10 °C to +40 °C			-10 °C to +40 °C		
24	320	560	24	320	560	24	320	560	
2 500	4 500	4 500	4 000	4 000	4 000	2 500	3 000	3 000	
0.88	0.76	0.76	1.4	1.4	1.4	3.4	3.2	3.2	
13	1.2	0.7	27	5.6	3.1	37	4.9	2.8	
0.9	0.9	0.9	1.6	1.6	1.6	3.8	3.8	3.8	
13.3	1.42	0.83	31	6.4	3.5	41	6	3	
3	3	3	5.5	5.5	5.5	11	11	11	
44.3	4.7	2.8	106.1	22	12.1	120	17	10	
5.7	68.3	105.6	4.4	25	47	8	57	103	
0.0677	0.63	1.09	0.052	0.25	0.46	0.09	0.65	1.14	
O.13	17	40.5	0.052	1.2	4.36	0.027	1.4	4.5	
0.25	34.4	87	0.11	2.84	8.71	0.15	7.4	24	
10	10	10	10	10	10	10	10	10	
	24, Special			24, Special			24, Special		
	4.5		2				4.5		
	IP 64		IP 64				IP 64		
	F		F				F		
	RAL 9005		RAL 9005				RAL 9005		
	3			3			3		
Y((star-configuratio	n)	Υ(:	star-configuratio	n)	Υ(star-configuratio	n)	

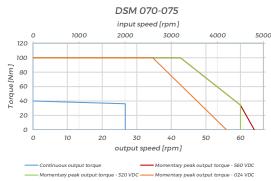
IMPORTANT NOTES:

- Load values in the table are valid for the nominal lifetime L₁₀ = 6 000 hours excluding DSM 095 where values are valid for L₁₀ = 12 000 hours.
 Service life for average torque T_a and average speed na other than rated n_r. T_r can be recalculated. Please contact manufacturer with estimated duty cycle
- High precision reduction gears are preffered for intermittent duty cycles (S3-S8); the output speed in aplications is inverted-variable. The S1 continuous duty cycle needs to be consulted with manufacturer
- Please consult the maximum speed in duty cycle with the manufacturer
- The values in the table refer to the ambient temperature of 20 $^{\circ}\text{C}$ to 25 $^{\circ}\text{C}$
- · For ambient temperatures lower than -10°C pre-heating might be considered please consult manufacturer

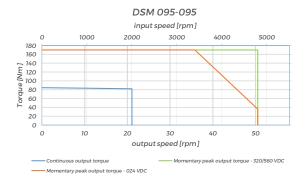


Tab. 8.4c: Inertia a	Tab. 8.4c: Inertia at input (DSM actuator without brake)										
Feedback type (d)	J _{w/o brake}	DSM 050	DSM 070	DSM 095	DSM 110						
OA	10 ⁻⁴ kgm²	0.062	0.420	1.657	1.825						
OB	10 ⁻⁴ kgm²	0.061	0.487	1.646	1.814						
OC	10 ⁻⁴ kgm²	0.061	0.487	1.646	1.814						
OD	10 ⁻⁴ kgm²	0.037	0.416	1.640	1.830						
OE	10 ⁻⁴ kgm²	0.037	0.416	1.640	1.830						
OF	10 ⁻⁴ kgm²	-	-	1.661	-						
OG	10 ⁻⁴ kgm²	-	-	1.661	-						
OH	10 ⁻⁴ kgm²	-	0.416	1.661	1.830						
OK	10 ⁻⁴ kgm²	0.060	=	=	-						
OL	10 ⁻⁴ kgm²	0.060	-	-	-						

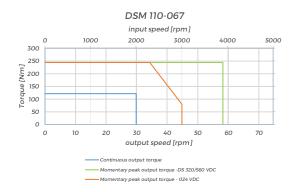

Tab. 8.4d: Inertia at input (DSM actuator with brake)								
Feedback type (d)	J _{w/o brake}	DSM 050	DSM 070	DSM 095	DSM 110			
OA	10 ⁻⁴ kgm²	0.121	0.780	1.707	2.193			
OB	10 ⁻⁴ kgm²	0.101	0.853	1.695	2.182			
OC	10 ⁻⁴ kgm²	0.101	0.853	1.695	2.182			
OD	10 ⁻⁴ kgm²	0.101	0.778	1.689	2.196			
OE	10 ⁻⁴ kgm²	0.101	0.778	1.689	2.196			
OF	10 ⁻⁴ kgm²	-	-	1.711	-			
OG	10 ⁻⁴ kgm²	-	-	1.711	-			
ОН	10 ⁻⁴ kgm²	-	0.778	1.711	2.196			
OK	10 ⁻⁴ kgm²	0.100	-	-	-			
OL	10 ⁻⁴ kgm²	0.100	-	-	-			

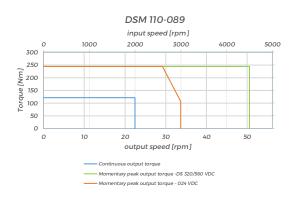


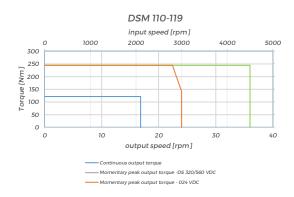
.....

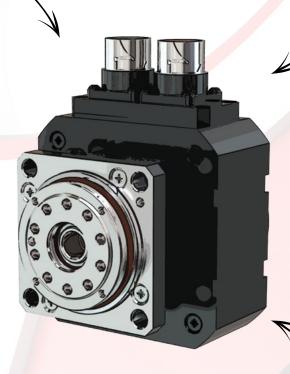


DSM 070-057





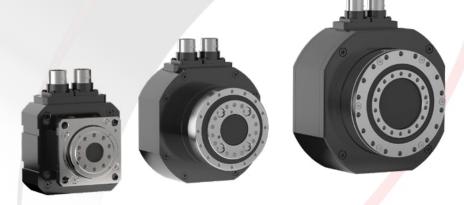




Very low mass

Torque density

Short axial length pancake design



DSF series

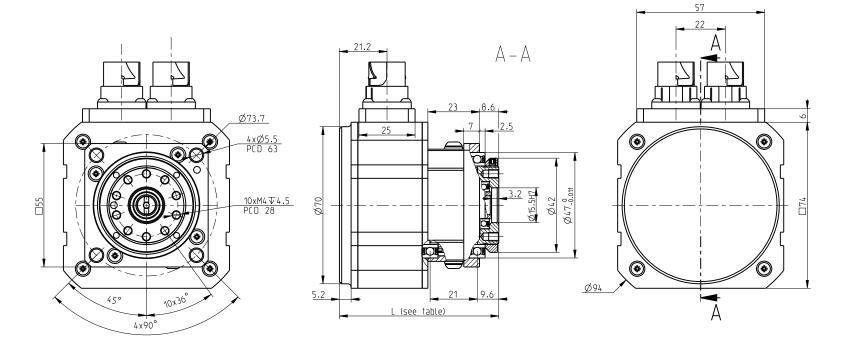
AND YET IT IS FLAT

8.5 DSF series

Advantages

- low mass
- · compact design
- extremely short axial length
- high torque density
- high dynamic performance
- high moment overload capacity

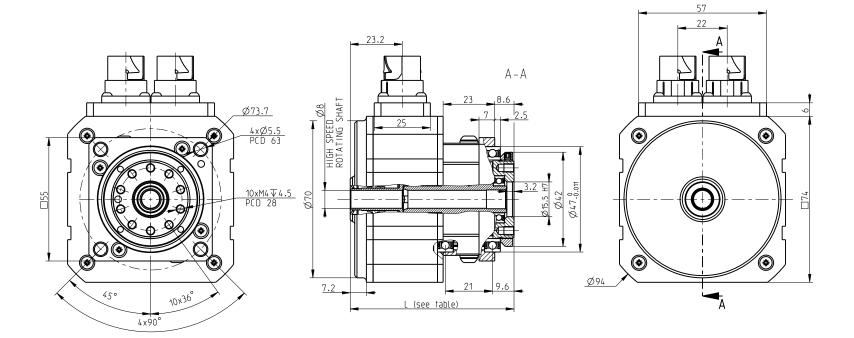
The **Drive**Spin® **DSF** "flat" series of electric actuators is characterized by the extremely short axial length with focus on maintaining the key features of the DriveSpin®. The DSF series was designed to be the most compact solution with very low mass and small dimensions. The DS "Flat" series consists of TwinSpin® reduction gear, servomotor and various feedback systems to be fully compatible with customer requirements. The TwinSpin® reduction gear used in the DSF actuators secures high accuracy, positioning repeatability, torsional stiffness as well as high carrying load due to the implemented bearing systems. Rated torque range of the DSF series is from 12Nm to the 85 Nm.


Tab. 8.5a: Rated output torque						
Size		050	070	095		
Rated output torque	T _r [Nm]	18	50	85		
Acceleration/ braking output torque	T _{max} [Nm]	36	100	170		

DSF 050 - i - abcde-fg-xy

DriveSp

DSF 050 - i - abcde-fg-xy

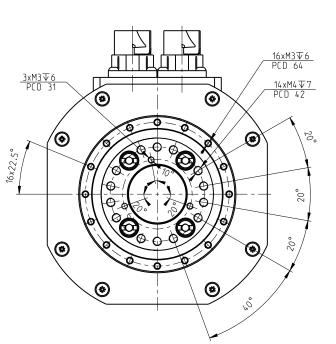


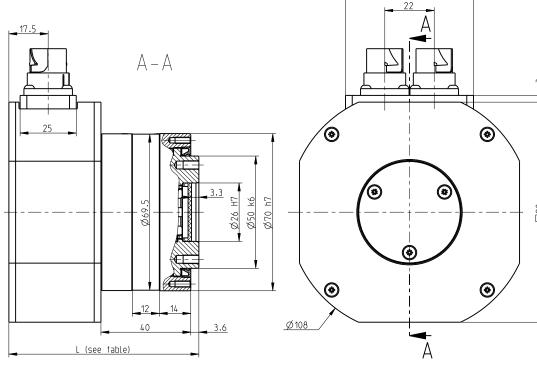
		Withou	t brake	With brake	
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *
DSF 050	OD,0E	71	1.2	94	1.4
	OJ	71	1.2	94	1.4
	ON	71	1.2	94	1.4

with hollowshaft

		Without	brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	75	1.2	100	1.4	
DSF 050	OJ	73	1.2	100	1.4	
	ON	75	1.2	105	1.4	

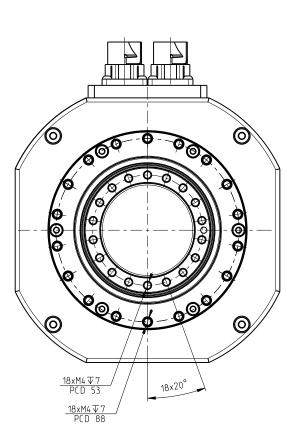
Hollowshaft rotates at motor speed

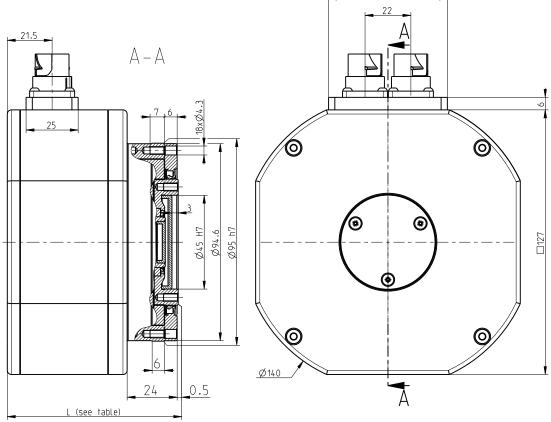



DSF 070 - i - abcde-fg-xy

SPINEA

DSF 070 - i - abcde-fg-xy


		Without	t brake	With I	orake
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *
	OA	92	3.5	-	-
DCE 070	OB,OC	97	3.5	-	-
DSF 070	OD,0E	92	3.5	-	-
	OM,ON	85	3.5	-	-



Projection

DSF 095 - i - abcde-fg-xy

DSF 095 - i - abcde-fg-xy

		Withou	t brake	With brake		
Size	Feedback type (d)	Dimension L ± 0,5 [mm]	Weight m [kg] *	Dimension L ± 0,5 [mm]	Weight m [kg] *	
	OA	93	4.5	-	-	
	OB,OC	93	4.5	-	-	
DSF 095	OD,OE	93	4.5	-	-	
	OJ	93	4.5	-	-	
	OM,ON	82	4.5	-	-	

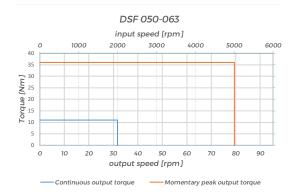
Reduction Gear parameters		Tolerance		DSF 050		
Reduction ratio	i			63		
Rated output torque	T _r [Nm]					
Acceleration/braking output torque	T _{max} [Nm]			36		
Rated input speed	n _r [rpm]			2 000		
Maximum allowable input speed 9)	n _{max} [rpm]			5 000		
Allowable moment ^{2 3)}	M _{cmax} [Nm]			44		
Tilting stiffness 1)6)	M _t [Nm/arcmin]			4		
Torsional stiffness 1171	k _t [Nm/arcmin]			2.5		
Lost motion	LM [arcmin]			< 1.5		
Hysteresis	H [arcmin]			< 1.5		
Rated radial force ²⁾	F _{rR} [kN]			1.44 8)		
Maximum axial force ²⁾⁴⁾	F _{a max} [kN]			1.9		
Gear lubrication			Grease C	astrol TRIBOL GF	R TT 1 PD	
Reduction gear limit temperature	[°C]		65 ℃			
Standard ambient temperature range	[°C]		-10 °C to +40 °C			
Motor parameters						
DC BUS voltage	U _{dc} [V _{dc}]	+/- 10%	24	320	560	
Motor rated speed	n _n [rpm]			3 500	3 500	
Motor rated torque	M _n [Nm]	+/- 10%		0.3	0.3	
Motor rated current	$I_n [A_{rms}]$			2	2	
Motor stall torque	M _o [Nm]	+/- 10%		0.3	0.3	
Motor stall current	I _o [A _{rms}]			2	2	
Motor peak torque	M _{max} [Nm]	+/- 10%	On	1.2	1.2	
Motor peak current	I _{max} [A]		request	8	8	
Motor back-EMF constant	K _E [V _{peak} /krpm]	+/- 10%		12	12	
Motor torque constant	$K_{T}[Nm/A_{rms}]$	+/- 10%		0.15	0.15	
Terminal resistance (L-L)	$R_{2ph}\left[\Omega ight]$	+/- 10%		4.4	4	
Terminal inductance (L-L)	L _{2ph} [mH]	+/- 20%		6	6	
Number of poles	2p			10	10	
Electromagnetic brake DC supply	$[V_{dc}]$			24. Special		
Electromagnetic brake torque at input	[Nm]			0.4		
Protection class				IP 64		
Motor Insulation class				F		
Paint				RAL 9005		
Motor number of phases				3		
Motor type of connection			y(star-configuration)			

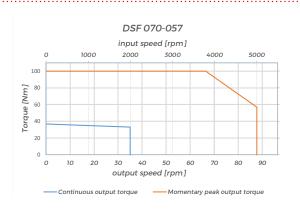
- 1) Mean statistical value
- 2) Load at output speed 32 rpm for size 050, other sizes at 15 rpm
- 3) Moment M_c max at F_a=0. If F_a +0 see Glossary
- 4) Axial force F_a max for M_c=0 (In case of size 050 also F_c=0 condition has to be fullfiled). If M_c≠0 see Glossary 5) 3 900 rpm for ratio 67; 4 500 rpm for ratios 89, 119

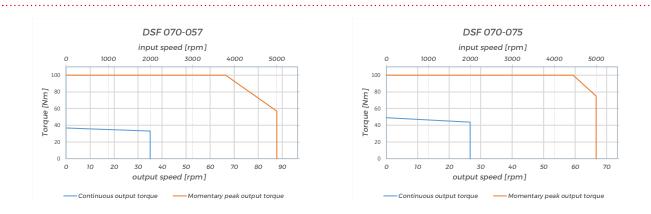
- 6) The parameter depends on the version of high precision reduction gear.
 7) The parameter depends on the version, ratio and lost motion of the high precision reduction gear.
- 8) For size 050 this is value of MAXIMUM RADIAL FORCE F_{rmax} for a2=0; Fa=0 and at 32 rpm output speed. For a2>0; Fa=0 at 32 rpm output speed F_{rmax} =44/(a2+0.0305). a2 represents the distance of the radial force centre from the front of the output flange in meters see Glossary
- 9) Instantaneous speed peak that may occur within the working cycle. Note please the temperature on the gear case that should not exceed significantly 60°C
- 10) 4 500 rpm for ratio 73 ; 4 800 rpm for ratio 95

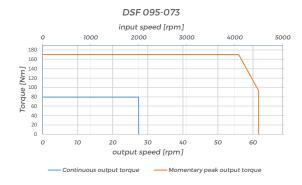
Tab. 8.5b: DSF series	technical data table	- continued				
	DSF 070		DSF 095			
	57. 75		73. 95			
	50		85			
	100			170		
	2 000			2 000		
	5 000			4 500 / 4 800 10)		
	142			410		
	35			120		
	7			15		
	< 1.5			< 1		
	< 1.5			< 1		
	2.8			3.5		
	4.1			11.1		
Grea	se Castrol TRIBOL GR TT	1 PD	Grea	se Castrol TRIBOL GR TT	1 PD	
	65 °C	65 °C 60 °C		60 °C		
	-10 °C to +40 °C			-10 °C to +40 °C		
24	320	560	24	320	560	
	3 000	3 000		2 500	2 500	
	1	1		1.8	1.8	
	2	1.12		2.6	1.5	
	1.08	1.08		1.8	1.8	
	2.2	1.2		2.6	1.5	
On	3	3	On	4.3	4.3	
request	6	3.4	request	6.2	3.6	
	44.37	84		61.2	111	
	0.5	0.89		0.692	1.2	
	5.2	14.5		3.9	14	
	9.8	30		7.8	26	
	16	16		20	20	
	24. Special			24. Special		
	4.5			4.5		
	IP 64			IP 64		
	F			F		
	RAL 9005			RAL 9005		
	3			3		
	Y(star-configuration)		Y(star-configuration)			

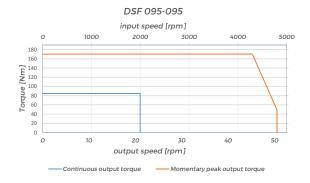
IMPORTANT NOTES:


- Load values in the table are valid for the nominal lifetime L₁₀ = 6 000 hours excluding DSF 095 where values are valid for L₁₀ = 12 000 hours.
 Service life for average torque T_a and average speed na other than rated n_r. T_r can be recalculated. Please contact manufacturer with estimated duty cycle
- High precision reduction gears are preffered for intermittent duty cycles (S3-S8); the output speed in aplications is inverted-variable. The S1 continuous duty cycle needs to be consulted with manufacturer
- · Please consult the maximum speed in duty cycle with the manufacturer
- The values in the table refer to the ambient temperature of 20 $^{\circ}\text{C}$ to 25 $^{\circ}\text{C}$
- · For ambient temperatures lower than -10°C pre-heating might be considered please consult manufacturer




Tab. 8.5c: Inertia at input (DSF actuator without brake)							
Feedback type (d)	J _{w/o brake}	DSF 050	DSF 070	DSF 095			
OA	10 ⁻⁴ kgm²	-	0.637	3.349			
OB	10 ⁻⁴ kgm²	-	0.615	3.330			
OC	10 ⁻⁴ kgm²	-	0.615	3.330			
0D	10 ⁻⁴ kgm²	0.094	0.617	3.332			
OE	10 ⁻⁴ kgm²	0.094	0.617	3.332			
OJ	10 ⁻⁴ kgm²	0.091	-	3.330			
OM	10 ⁻⁴ kgm²	-	0.630	3.346			
ON	10 ⁻⁴ kgm²	0.105	0.630	3.346			


Tab. 8.5d: Inertia at input (DSF actuator with brake)							
Feedback type (d)	J _{w/o brake}	DSF 050	DSF 070	DSF 095			
OA	10 ⁻⁴ kgm²	-	-	-			
OB	10 ⁻⁴ kgm²	_	_	_			
OC	10 ⁻⁴ kgm²	-	-	-			
OD	10 ⁻⁴ kgm²	0.104	-	-			
OE	10 ⁻⁴ kgm ²	0.104	-	-			
OJ	10 ⁻⁴ kgm²	0.102	_	_			
OM	10 ⁻⁴ kgm²	_	_	_			
ON	10 ⁻⁴ kgm²	0.118	_	_			



9. Configuration matrix

Tab.	9.a: Feedback availability matrix								
(d)	Feedback type	DS 050	DS 060	DS 070	DS 095	DS 110	DS 115	DS 140	DS 155
OA	Resolver	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark
ОВ	Absolute Singleturn Encoder Hiperface	✓	✓	✓	✓	✓	✓	✓	✓
0C	Absolute Multiturn Encoder Hiperface	✓	✓	\checkmark	✓	✓	✓	\checkmark	\checkmark
0D	Absolute Singleturn Encoder EnDat	✓	✓	✓	✓	✓	✓	✓	✓
ΟE	Absolute Multiturn Encoder EnDat	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark
OF	Absolute Singleturn Encoder EnDat + sin/cos	0	0	✓	0	0	0	✓	0
0G	Absolute Multiturn Encoder EnDat + sin/cos	0	0	\checkmark	0	0	0	\checkmark	0
ОН	Incremental sin/cos Encoder + sin/cos Commutation	×	✓	✓	✓	✓	✓	✓	✓
OJ	Incremental A/B/I Encoder + Block Commutation	✓	✓	\checkmark	0	0	✓	0	0
OK	Absolute Singleturn Encoder Hiperface DSL	✓	×	✓	✓	✓	✓	0	✓
OL	Absolute Multiturn Encoder Hiperface DSL	✓	×	✓	✓	✓	✓	0	\checkmark
ОМ	Absolute Singleturn Encoder BiSS	0	×	0	0	0	✓	0	✓
ON	Absolute Multiturn Encoder BiSS	0	×	0	0	0	✓	0	\checkmark
OP	Absolute Singleturn Encoder DRIVE-CLiQ	0	×	✓	✓	✓	0	0	0
0Q	Absolute Multiturn Encoder DRIVE-CLiQ	0	×	✓	✓	✓	0	0	0
OR	Absolute Multiturn Fanuc	×	×	✓	✓	✓	0	0	0
OS	Absolute Singleturn Fanuc	×	×	✓	✓	✓	0	0	0

[✓] Available Not available •On request

Tab.	Tab. 9.b: Feedback types and signal wiring diagrams matrix							
(d)	Feedback type	(g)	Signal wiring diagram	Position Feedback				
OA	Resolver	J	for Terminal cable for Connectors	Analogue sin/cos tracks				
ОВ	Absolute Singleturn Encoder Hiperface	G H	for Terminal cable for Connectors	via Hiperface protocol				
OC	Absolute Multiturn Encoder Hiperface	G H	for Terminal cable for Connectors	via Hiperface protocol				
OD	Absolute Singleturn Encoder EnDat	A B	for Terminal cable for Connectors	via Endat protocol				
OE	Absolute Multiturn Encoder EnDat	В	for Terminal cable for Connectors	via Endat protocol				
OF	Absolute Singleturn Encoder EnDat + sin/cos	C D	for Terminal cable for Connectors	via Endat protocol				
OG	Absolute Multiturn Encoder EnDat + sin/cos	C D	for Terminal cable for Connectors	via Endat protocol				
ОН	Incremental sin/cos Encoder + sin/cos Commutation	E F	for Terminal cable for Connectors	1Vpp sin/cos tracks				
OJ	Incremental A/B/I Encoder + Block Commutation	N 0	for Terminal cable for Connectors	Rectangular A/B tracks and Index mark once per revolution				
OK	Absolute Singleturn Encoder Hiperface DSL	J1	for Terminal cable for Connectors	via Hiperface DSL protocol				
OL	Absolute Multiturn Encoder Hiperface DSL	HJ JJ	for Terminal cable for Connectors	via Hiperface DSL protocol				
OM	Absolute Singleturn Encoder BiSS	R	for Terminal cable for Connectors	via BiSS protocol				
ON	Absolute Multiturn Encoder BiSS	R	for Terminal cable for Connectors	via BiSS protocol				
OP	Absolute Singleturn Encoder DRIVE-CLiQ	T U	for Terminal cable for Connectors	via Drive-CliQ protocol				
0Q	Absolute Multiturn Encoder DRIVE-CLiQ	T U	for Terminal cable for Connectors	via Drive-CliQ protocol				
OR	Absolute Multiturn Fanuc	A B	for Terminal cable for Connectors	via Fanuc serial αi protocol				
OS	Absolute Singleturn Fanuc	A B	for Terminal cable for Connectors	via Fanuc serial αi protocol				

Tab. 9.a	Tab. 9.a: Feedback availability matrix - continued													
DSM 050	DSM 070	DSM 095	DSM 110	DSH 050	DSH 070	DSH 085	DSH 110	DSH 115	DSH 125	DSH 155	DSH 170	DSF 050	DSF 070	DSF 095
✓	✓	✓	✓	\checkmark	✓	✓	✓	✓	\checkmark	✓	\checkmark	0	✓	✓
✓	✓	✓	✓	0	×	✓	0	✓	✓	✓	✓	0	✓	✓
✓	✓	✓	\checkmark	0	×	\checkmark	0	✓	\checkmark	✓	✓	0	✓	\checkmark
✓	✓	✓	✓	×	0	✓	0	✓	✓	✓	✓	✓	✓	✓
✓	✓	✓	✓	×	0	✓	0	✓	✓	✓	✓	✓	✓	\checkmark
0	0	0	0	×	0	0	0	0	0	0	0	0	0	0
0	0	0	0	×	×	0	×	×	×	×	0	0	0	0
×	✓	✓	✓	×	×	0	×	×	×	×	0	×	0	0
0	0	0	0	✓	✓	0	0	0	0	0	0	\checkmark	0	0
✓	0	0	0	×	×	×	×	×	×	×	×	0	0	0
✓	0	0	0	×	×	×	×	×	×	×	×	0	0	0
0	✓	0	0	✓	0	✓	0	0	✓	0	0	✓	✓	✓
0	✓	0	0	✓	✓	✓	0	0	✓	0	✓	✓	✓	✓
0	×	0	0	×	0	×	0	×	×	×	0	0	0	0
0	×	0	0	×	0	×	0	×	×	×	0	0	0	0
×	0	0	0	×	0	×	0	×	×	×	0	×	0	0
×	0	0	0	×	0	×	0	×	×	×	0	×	0	0

Tab. 9.b: Feedback types and sig	nal wiring diagrams matrix - co

✓ Available × Not available • On request

Tab. 9.b: Feedback types and sig	nal wiring diagrams matrix - contir	nued	
Position resolution	Commutation type	Additional Incremental signals	Additional signals Resolution
1 line per revolution	via Position Feedback Absolute Position	-	-
Number of bits per revolution	via Position Feedback Absolute Position	1Vpp sin/cos 1)	Number of lines per revolution
Number of bits per revolution + Number of revolutions	via Position Feedback Absolute Position	1Vpp sin/cos 1)	Number of lines per revolution
Number of bits per revolution	via Position Feedback Absolute Position	-	-
Number of bits per revolution + Number of revolutions	via Position Feedback Absolute Position	-	-
Number of bits per revolution	via Position Feedback Absolute Position	1Vpp sin/cos	Number of lines per revolution
Number of bits per revolution + Number of revolutions	via Position Feedback Absolute Position	1Vpp sin/cos	Number of lines per revolution
Number of lines per revolution	1 sin/cos track over one revolution for a absolute position of commutation and		1 line per revolution
Number of counts per revolution	U/V/W states (Halls states) for block co	ommutation	Motor poles dependant
Number of bits per revolution	via Position Feedback Absolute Position	-	-
Number of bits per revolution + Number of revolutions	via Position Feedback Absolute Position	-	-
Number of bits per revolution	via Position Feedback Absolute Position	-	-
Number of bits per revolution + Number of revolutions	via Position Feedback Absolute Position	-	-
Number of bits per revolution	via Position Feedback Absolute Position	-	-
Number of bits per revolution + Number of revolutions	via Position Feedback Absolute Position	-	-
Number of bits per revolution + Number of revolutions	via Position Feedback Absolute Position	-	-
Number of bits per revolution	via Position Feedback Absolute Position	-	-

Tab. 9.c:	Tab. 9.c: Type of electrical connection (e) and power wiring diagrams (f)										
		(e)	= O	(e)	= 1	(e) = 2				(e) = 3	
Type and size	DC Bus Voltage	Straight connectors 923/623	Straight connectors 915/615	Connector on cable directed upward 923/623	Connector on cable directed upward 915/615	Hybrid Straight connectors 723 (Hiperface DSL only)	Hybrid Straight connectors 923 (Hiperface DSL only)	Hybrid Straight connectors 915 (Hiperface DSL only)	Hybrid Angled rotable connectors 723 (Hiperface DSL only)	Hybrid Angled rotable connectors 923 (Hiperface DSL only)	Hybrid Angled rotable connectors 915 (Hiperface DSL only)
DSx xxx	(a)	√/o/×	√/o/×	√/o/ ×	√/o/×	√/o/×	√/o/×	√/o/×	√/o/×	√/o/ ×	√/o/ ×
DSx 050	24VDC 320VDC 560VDC	×	✓	✓	0	0	0	0	0	0	0
DS 060	24VDC 320VDC 560VDC	×	✓	✓	0	0	0	0	0	0	0
DSx 070	24VDC 320VDC 560VDC	✓	0	✓	0	0	0	0	0	0	0
DS 085	24VDC 320VDC 560VDC	✓	0	✓	0	0	0	0	0	0	0
DSx 095	24VDC 320VDC 560VDC	✓	0	✓	0	0	0	0	0	0	× 0
DSx 110	24VDC 320VDC 560VDC	✓	0	✓	0	0	0	0	0	0	x
DSx 115	24VDC 320VDC 560VDC	x ✓	0	x ✓	0	0	0	0	0	0	× 0
DSH 125	24VDC 320VDC 560VDC	x ✓	× 0	x ✓	× 0	x	× 0	× 0	× 0	× 0	× 0
DS 140	24VDC 320VDC 560VDC	x ✓	× 0	x	× 0	× 0	× 0	× 0	× 0	× 0	× 0
DSx 155	24VDC 320VDC 560VDC	× ✓	× 0	× ✓	× 0	× 0	× 0	× 0	× 0	× 0	× 0
DSH 170	24VDC 320VDC 560VDC	x ✓	× 0	x	× 0	x	× 0	× 0	× 0	× 0	× 0

🗴 N/A - Not available

On request

(e) = 0

(e) = 1

(e) = 2

(e) = 3

(e) = 4

(e) = 5

Tab. 9.c:	Tab. 9.c: Type of electrical connection (e) and power wiring diagrams (f) - continued										
	(e)	= 4	(e) = 5	(e) = 6	(e) = 7	(e) = 8	(e) = B		(e)	(e) = C	
DC Bus Voltage	Angled rotable connectors 923/623	Angled rotable connectors 915/615	Cable upwards	Y-tec connector 915/615	Cable forwards	Cable backwards	Connector on cable directed forward 923/623	Connector on cable directed forward 915/615	Connector on cable directed backward 923/623	Connector on cable directed backward 915/615	
(a)	√/o/ ×	√/o/×	√/o/ ×	√/o/×	√/o/ ×	√/o/ ×	√/o/ ×	√/o/ ×	√/o/ <u>×</u>	√/o/ <u>×</u>	
24VDC 320VDC 560VDC	×	0	✓	✓	✓	✓	✓	0	✓	0	
24VDC 320VDC 560VDC	×	0	✓	✓	✓	✓	✓	0	✓	0	
24VDC 320VDC 560VDC	✓	0	✓	✓	0	0	✓	0	✓	0	
24VDC 320VDC 560VDC	✓	0	✓	✓	0	0	✓	0	✓	0	
24VDC 320VDC 560VDC	✓	0	✓	0	0	0	✓	0	✓	× 0	
24VDC 320VDC 560VDC	✓	0	✓	0	0	0	o ✓	0	○ ✓	× 0	
24VDC 320VDC 560VDC	x ✓	× 0	✓	× 0	0	0	x ✓	× 0	x ✓	× 0	
24VDC 320VDC 560VDC	x ✓	× 0	✓	× 0	0	0	x ✓	× 0	x ✓	× 0	
24VDC	×	×		×			×	×	×	×	
320VDC 560VDC	✓	0	0	0	0	√	✓	0	✓	0	
24VDC 320VDC 560VDC	x ✓	× 0	✓	× 0	0	0	x	× 0	× ✓	× 0	
24VDC 320VDC 560VDC	x	x	✓	x <	✓	✓	x	x 0	x	x 0	

- **√** Available
- 🗴 N/A Not available
- On request

(e) = 7

(e) = 8

(e) = B

(e) = C

Tab. 9.d: Power connection: Connectors and Terminal cable									
Connector type	923 (6 pin,	rotation E)	923 (8 pin,	rotation E)	923 (8 pin,	rotation E)	Ter	minal cable	•
Power wiring diagram (f)		A	1	В	•	3	D		
	Pin	Signal	Pin	Signal	Pin	Signal	Colour	Mark	Signal
	1	U	1	U	1	Brake+ 1)	Green/Yellow		PE
	2	V	2	PE	2	Brake- 1)	-	1	U
	3	PE	3	W	3	therm+ 2)	-	2	V
	4	Brake+ 1)	4	V	4	therm- 2)	-	3	W
	5	Brake- 1)	А	Brake+ 1)	5	N/C	White	or 4	Brake+ 1)
	6	W	В	Brake- 1)	А	U	Brown	or 5	Brake- 1)
	-	-	С	N/C	В	W			
	-		D	N/C	С	V			
	-	-	-	-	PE	PE			
		ctor type		tor type		tor type			
Pinout (for actuators with		23 otation E)		23 otation E)		15 otation E)			
connectors and cables directed upwards / forwards / backwards with connector, e=0, 1, 4, 6, B, C	E O S	3	C C B A	300	A () () () () () () () () () () () () ()				
Pinout	9	ctor type 23 otation P)	9:	ctor type 23 otation P)	9	tor type 15 station P)			
(for cables between actuator and servo drive, CAB-POW-XXX-XX- XXX-XXX)	3 (6)	2 1 p		0 C C C C C C C C C C C C C C C C C C C	(5)	9 4 9 3 4 9 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			

NOTES:

- N/C Not Connected
- Only connected in actuators with option Electromagnetic brake
- ²⁾ Only connected in combination with Signal wiring diagram (g)=0

NOTES:

- N/C Not Connected
- 1) BAT use with EBI 135 and EBI 1135 with multiturn function powered via battery instead of Sensor which is internally connected to corre sponding supply line, and may be used for remote sense and control of power supply
- 2) Only connected in combination with Signal wiring diagram (g)=0
- 3) C/D signals for sin/cos commutation
- 4) In case of type of electrical connection with connector type 915/615 series thermistor are connected in **POWER** part of wiring diagram (f) = C to pins 3 = therm+ and 4 = therm-
- 5) U/V/W signals for block commutation

Tab. 9.e: Siç	gnal connect	ion: Conne	ctors						
Connector type			2 pin, rotatio 2 pin, rotatio				23 (17 pin, rotat 15 (15 pin, rotat		617 (10 pin, rotation E)
Signal wiring diagram (g)	В	В	н	J	s	D	F (Only 623 17 pin connector)	0	U
Feedback type (d)	EnDat	Fanuc αi	Hiperface	Reslover	BiSS-C	EnDat + sin/cos	Incremental sin/cos + sin/co commutation	Incremental s A/B/I + block commutation	Drive-CLiQ
Pin					s	ignal			
1	Up (supply)	Up (supply)	Us (supply)	N/C	Us (supply)	B-	A+	A +	TxP
2	Sensor Up/UBAT ¹⁾	Sensor Up	GND (supply)	therm+	N/C	0 V (supply)	Α-	A-	TxN
3	O V (supply)	0 V (supply)	+COS	S4	GND (supply)	A-	R+	B+	N/C
4	Sensor OV/ O VBAT ¹⁾	Sensor OV	REFCOS	S3	N/C	Up (supply)	D- ³⁾	B-	N/C
5	DATA+	DATA+	REFSIN	R2 (supply)	MA+	DATA+	C+ 3)	+	RxP
6	DATA-	DATA-	+SIN	therm-	MA-	N/C	C-3)	I-	RxN
7	CLOCK+	Request+	therm+	S2	SLO+	therm+	0 V (supply)	U+ ⁵⁾	N/C
8	CLOCK-	Request-	therm-	S1	SLO-	CLOCK+	therm+	U- ⁵⁾	N/C
9	N/C	N/C	DATA+	R1 (supply)	N/C	B+	therm-	V+ ⁵⁾	Up (supply)
10	N/C	N/C	DATA-	N/C	N/C	Sensor O V ²⁾	Up (supply)	V- 5)	0 V (supply)
11	therm+	therm+	N/C	N/C	therm+	A+	B+	W+ ⁵⁾	
12	therm-	therm-	N/C	N/C	therm-	Sensor Up ²⁾	B-	W- ⁵⁾	
13	N/C	N/C	N/C	N/C	N/C	DATA-	R-	Us (supply)	
14	N/C	N/C	N/C	N/C	N/C	therm-	D+ ³⁾	GND (supply)	
15	N/C	N/C	N/C	N/C	N/C	CLOCK-	Sensor O V ²⁾	therm+4)	
16	N/C	N/C	N/C	N/C	N/C	N/C	Sensor Up ²⁾	therm-4)	
17	N/C	N/C	N/C	N/C	N/C	N/C	N/C	N/C	
Pinout (for actuators	(12 nin	ector type 623 rotation E)		Connector 615 (12 pin, rotat		Connecto 623 (17 pin, rota		onnector type 615 pin, rotation E)	Connector type 617 (10 pin, rotation E)
with connectors and cables directed up- wards / forwards / backwards with connector, e=0, 1, 4, 6, B, C	6 8	9 1 12 10 2 E 11 3		11 12 01 10 E	2 2 4	0 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10		1 2 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	80 01 07 09 E0 10 30
Pinout (for cables be-		ector type 623 , rotation P)		Connector 615 (12 pin, rotat		Connecto 623 (17 pin, rota		onnector type 615 pin, rotation P)	
(for capies be- tween actuator and servo drive, CAB-POW-XXX- -XX- XXX-XXX)	(°)	0 50 p 70 70		30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	012	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	3 0 0 01 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

gnal wiring o	diagram (g)	Α	Α	С	E	G	I	N	R	Т
eedback type (d)		EnDat	Fanuc αi	EnDat + sin/cos	sin/cos + sin/cos Hiperface Resolver		Incremental A/B/I + block commutation	BiSS-C	Drive-CLiQ	
Cable I	DIN 47100					Signal				
Core	Colour					O.g.ia.				
1	White	therm+	therm+	therm+	therm+	therm+	therm+	therm+	therm+	N/C
2	Brown	therm-	therm-	therm-	therm-	therm-	therm-	therm-	therm-	N/C
3	Green	Up (supply)	Up (supply)	Up (supply)	Up (supply)	Us (supply)	R1 (supply)	Us (supply)	Us (supply)	Up (supply)
4	Yellow	0 V (supply)	0 V (supply)	O V (supply)	0 V (supply)	GND (supply)	R2 (supply)	GND (supply)	GND (supply)	0 V (supply)
5	Grey	DATA+	DATA+	DATA+	D+ 3)	DATA+	S1	A+	SLO+	RXP
6	Pink	DATA-	DATA-	DATA-	D- ³⁾	DATA-	S2	Α-	SLO-	RXN
7	Blue	CLOCK+	Request+	CLOCK+	C+ 3)	+SIN	S3	B+	MA+	TXP
8	Red	CLOCK-	Request-	CLOCK-	C- 3)	+COS	S4	B-	MA-	TXN
9	Black	Sensor Up/UBAT ¹⁾	Sensor Up	Sensor Up ²⁾	Sensor Up ²⁾	REFSIN	N/C	[+	N/C	N/C
10	Violet	Sensor OV/ O VBAT ¹⁾	Sensor OV	Sensor OV 2)	Sensor OV 2)	REFCOS	N/C	I-	N/C	N/C
11	Grey/Pink	N/C	N/C	A+	A+	N/C	N/C	U+ ⁵⁾	N/C	N/C
12	Red/Blue	N/C	N/C	Α-	A-	N/C	N/C	U- ⁵⁾	N/C	N/C
13	White/Green	N/C	N/C	B+	B+	N/C	N/C	V+ ⁵⁾	N/C	N/C
14	Brown/Green	N/C	N/C	B-	B-	N/C	N/C	V- 5)	N/C	N/C
15	White/Yellow	N/C	N/C	N/C	R+	N/C	N/C	W+ ⁵⁾	N/C	N/C
16	Yellow/Brown	N/C	N/C	N/C	R-	N/C	N/C	W- ⁵⁾	N/aC	N/C
17	White/Grey	N/C	N/C	N/C	N/C	N/C	N/C	N/C	N/C	N/C

NOTES:

- N/C Not Connected
- 19 BAT use with EBI 135 and EBI 1135 with multiturn function powered via battery instead of Sensor which is internally connected to corresponding supply line, and may be used for remote sense and control of power supply

 2 Only connected in combination with Signal wiring diagram (g)=0

 3) C/D signals for sin/cos commutation

 4) In case of type of electrical connection with connector type 915/615 series thermistor are connected in **POWER** part of wiring diagram (f) = C to pins 3 = therm+ and 4 = therm
 5) U//W signals for block commutation

Tab. 9.g: Hybrid connec	Tab. 9.g: Hybrid connection: Connectors and Terminal cable								
Connector type	723 (7+2 pin, rotation E)		923 (8 pin,	rotation E)	923 (8 pin,	rotation E)	Ter	minal cable	•
Hybrid wiring diagram (f) - Power + Hiperface DSL	н	О	н	ıı	н	12		Jī	
r ower v riipendee 202	Pin	Signal	Pin	Signal	Pin	Signal	Colour	Mark	Signal
	А	U	1	Brake+ 1)	1	U	Green/Yellow	-	PE
	В	V	2	Brake- 1)	2	PE	-	1	U
	С	W	3	DSL+	3	W	-	2	V
	D	N/C	4	DSL-	4	V	-	3	W
	PE	PE	5	N/C	А	Brake+ 1)	White	or 4	Brake+ 1)
	Н	DSL+	А	U	В	Brake- 1)	Black	or 5	Brake- 1)
	L	DSL-	В	W	С	DSL+	White		DSL+
	7	Brake+ 1)	С	V	D	DSL-	Blue		DSL-
	8	Brake- 1)	PE	PE					
	7:	tor type 23 otation E)	Connec 91 (9 pin. ro	15	9:	tor type 23 station E)			
Pinout (for actuators with hybrid connectors, e=2,3)	80	6 8	A ST		C E B B A				

NOTES:

- N/C Not Connected
- ¹⁾ Only connected in actuators with option Electromagnetic brake

Technical specifications of thermistors

Tab. 9.h: PTC 111-K13							
T _{NAT} = 140°C							
Resistance values according to DIN 44081 and DIN 44082							
Temperature range T [°C]	Resistance R [Ω]						
-20 to 120	R ≤ 250						
120 to 135	R ≤ 550						
135 to 145	R ≤ 1330						
> 155	R ≤ 4000						

Tab. 9.i: PT 1000							
Temperature range T [°C]	Resistance R [Ω]						
-40	843						
-30	882						
-20	922						
-10	961						
0	1000						
10	1039						
20	1078						
30	1117						
40	1155						
50	1194						
60	1232						
70	1271						
80	1309						
90	1347						
100	1385						
110	1423						
120	1461						
130	1498						
140	1536						
150	1573						
160	1611						
170	1648						
180	1685						
190	1722						
200	1759						
210	1795						
220	1832						
230	1868						
240	1905						
250	1941						

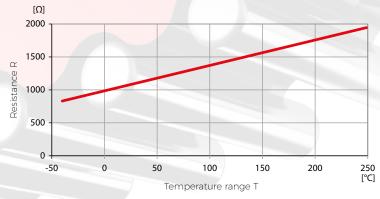
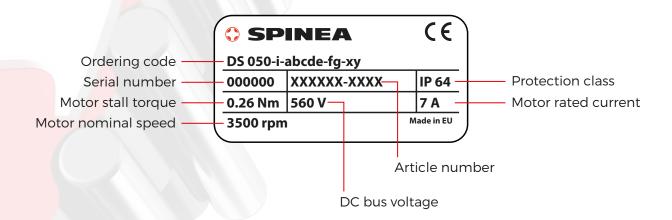



Fig. 9.10: Resistance / Temperature PT 1000

DS-DSH-DSM-DSF 050, 060 Identification Labels

DS-DSH-DSM-DSF 070, 085, 095, 110, 115, 125, 140, 155, 170 Identification Labels

SPINEA

Tab. 10.a: Ordering code for Cable

Post total		Connection type	Wiring diagram	Connection on	Wiring diagram	
Description	Length	on actuator side	on actuator side	servo drive side	on servo drive side	Ordering code
Power cable, PUR 7x0.5 mm2, shielded, 6 pin female Intercontec connector		923 (6 pin), rotation P	А		D	CAB-POW-XXX-00-01A-00D
Power cable, PUR 7x0.5 mm2, shielded, 8 pin female Intercontec connector		923 (8 pin), rotation P	В		D	CAB-POW-XXX-00-02B-00D
Power cable, PUR 7x0.5 mm2, shielded, 9 pin female Intercontec connector		915 (9 pin), rotation P	С		D	CAB-POW-XXX-00-03C-00D
Power cable, PUR 4x1 mm2 + 2x0.5 mm2, shielded, C-track compatible, 6 pin female Intercontec connector		923 (6 pin), rotation P	А		D	CAB-POW-XXX-10-01A-00D
Power cable, PUR 4x1 mm2 + 2x0.5 mm2, shielded, C-track compatible, 8 pin female Intercontec connector		923 (8 pin), rotation P	В		D	CAB-POW-XXX-10-02B-00D
Power cable, PUR 4x1 mm2 + 2x0.5 mm2, shielded, C-track compatible, 9 pin female Intercontec connector		915 (9 pin), rotation P	С		D	CAB-POW-XXX-10-03C-00D
Power cable, PUR 4x1.5 mm2 + 2x0.5 mm2, shielded, C-track compatible, 6 pin female Intercontec connector	On XXX position,	923 (6 pin), rotation P	А		D	CAB-POW-XXX-11-01A-00D
Power cable, PUR 4x1.5 mm2 + 2x0.5 mm2, shielded, C-track compatible, 8 pin female Intercontec connector	defined as XX,X meters (for example code 305 represent 30.5 meters)	923 (8 pin), rotation P	В	Without connector - free end	D	CAB-POW-XXX-11-02B-00D
Power cable, PUR 4x1.5 mm2 + 2x0.5 mm2, shielded, C-track compatible, 9 pin female Intercontec connector		915 (9 pin), rotation P	С		D	CAB-POW-XXX-11-03C-00D
Power cable, PUR 4x2.5 mm2 + 2x0.5 mm2, shielded, C-track compatible, 6 pin female Intercontec connector		923 (6 pin), rotation P	А		D	CAB-POW-XXX-12-01A-00D
Power cable, PUR 4x2.5 mm2 + 2x0.5 mm2, shielded, C-track compatible, 8 pin female Intercontec connector		923 (8 pin), rotation P	В		D	CAB-POW-XXX-12-02B-00D
Power cable, PUR 4x2.5 mm2 + 2x0.5 mm2, shielded, C-track compatible, 9 pin female Intercontec connector		915 (9 pin), rotation P	С		D	CAB-POW-XXX-12-03C-00D
Power cable, PUR 4x4 mm2 + 2x1 mm2, shielded, C-track compatible, 6 pin female Intercontec connector		923 (6 pin), rotation P	А		D	CAB-POW-XXX-13-01A-00D
Power cable, PUR 4x4 mm2 + 2x1 mm2, shielded, C-track compatible, 8 pin female Intercontec connector		923 (8 pin), rotation P	В		D	CAB-POW-XXX-13-02B-00D
Power cable, PUR 4x4 mm2 + 2x1 mm2, shielded, C-track compatible, 9 pin female Intercontec connector		915 (9 pin), rotation P	С		D	CAB-POW-XXX-13-03C-00D
Signal cable, PUR 10x0.14 mm2, shielded, C-track compatible, 12 pin female Intercontec connector		623 (12 pin), rotation P	B/H/J/S		A/G/I/R	CAB-SIG-XXX-00-01B (or H/J/S)-00A(or G/I/R)
Signal cable, PUR 10x0.25 mm2, shielded, C-track compatible, 12 pin female Intercontec connector	On XXX position, defined as XX,X	623 (12 pin), rotation P	B/H/J/S	Without connector	A/G/I/R	CAB-SIG-XXX-01-01B (or H/J/S)-00A(or G/I/R)
Signal cable, PUR 18x0.14 mm2, shielded, C-track compatible, 17 pin female Intercontec connector	meters (for example code 305 represent 30.5 meters)		D/F/O	- free end	C/E/N	CAB-SIG-XXX-02-02D (or F/O)-00C(or E/N)
Signal cable, PUR 18x0.14 mm2, shielded, C-track compatible, 15 pin female Intercontec connector	30.34110.013)	615 (15 pin), rotation P	D/F/O		C/E/N	CAB-SIG-XXX-02-04D (or F/O)-00C(or E/N)

NOTES:

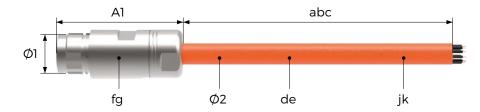
Please consider cable length limits for used feedback type and cross sections of power cables

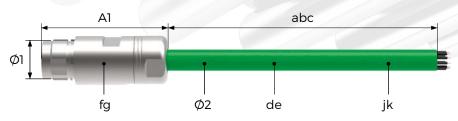
CAB POW-305-00-01A-00D

OO-: Connection type on Servo drive side

-- D: Wiring diagram on Servo drive side

O 1 -: Connection type on Actuator side


--A: Wiring diagram on Actuator side


00: Cable type - Power cable PUR 7x0.5 mm²

305: Lenght of calbe - **30.5 meters**

POW: Power cable

CAB: Cable

Туре	abc	Cable length				
POW	V/V/	Defined as XX.X meters (for example code 305				
SIG	XXX	represent 30.5)				

Туре	de	Cable	φ 2 (mm)
	00	PUR 7x0.5 mm ²	7.2
	10	PUR 4x1 mm ² + 2x0.5 mm ²	9.6
POW	11	PUR 4x1.5 mm ² + 2x0.5mm ²	11
	12	PUR 4x2.5 mm ² + 2x0.5mm ²	12.8
	13	PUR 4x4 mm² + 2x1 mm²	14.8
	00	PUR 10x0.14 mm2	6.3
SIG	01	PUR 10x0.25 mm ²	6.9
	02	PUR 18x0.14 mm²	7.3

Type	jk	Cable length
POW	00	Without connector - free end
SIG	00	Without connector - free end

Туре	fg	Connector on actuator side	ø 1 (mm)	φ A (mm)
POW	01	923 (6 pin), rotation P	28	64
	02	923 (8 pin), rotation P	28	64
	03	915 (9 pin), rotation P	18.7	42
SIG	01	623 (12 pin), rotation P	26	55
	02	623 (17 pin), rotation P	26	55
	04	623 (15 pin), rotation P	18.7	42

11. Performance conditions and technical terminology

TwinSpin®

Trademark of high precision reduction gear.

DriveSpin®

The combination of TwinSpin® high precision reduction gear, permanent magnet synchronous motor (further referred as PMSM, motor or electromotor), thermistor sensor and position feedback sensor. Optionally also power off parking electromagnetic brake can be built-in. Thermistor is inside PMSM windings for overheat protection. PMSM, position feedback sensor and electromagnetic brake are placed on shaft (also referred as input shaft) of TwinSpin®. Loads are usually connected to output flange of TwinSpin® which is also output flange of DriveSpin®.

Input speed

It refers to speed of input shaft of TwinSpin® reduction gear driven by PMSM of DriveSpin®.

Output speed

It refers to the speed of output flange of DriveSpin® to drive connected loads.

Input torque

It refers to torques at input shaft of TwinSpin® reduction gear generated by PMSM. (Note: Electromagnetic brake also generates torque at input but is not included in this term instead defined as braking torque at input).

Output torque

It refers either to limiting torques developed on or by output flange of DriveSpin® or to calculated values of torque generated by PMSM including ratio and losses in gearbox, additional seals or bearings.

Fig. 11.1: Schematic diagram of inputs, outputs and rotation direction

Ratio

Expresses number of motor turns at input shaft needed to make one whole rotation of load at output flange of DriveSpin® actuator. Speed of load at output flange is reversed in contrary to electromotor speed, so for calculation purpose a negative ratio might be considered in control

Hollowshaft diameter

Defines DSH series diameter of hollow through bore. Standard versions of DSH 085, 115, 125, 155, 170 have built-in static tube which prevents from contact with rotating input shaft which rotates at electromotor speed. Hollowshafts are for example used to lead hydraulic, pneumatic or electric media through cables, pipes or by some other means to supply additional components which might reduce space or eventually protects this supplies.

Rated output torque, Rated input speed, Service life

The nominal service life of TwinSpin® reduction gear as a main component of actuator DriveSpin® is determined by service life of the bearings on the input shaft. This nominal service life is limited by the material fatigue of the bearings. It does not take into account other factors that may be a limit to the practical service life, such as insufficient lubrication contamination or overload. The nominal service life is only statistical value. It denotes time in operation under rated conditions during which 10% of a large number of reduction gears get damaged due to material fatigue. For further details or special calculations for your specific application please contact the Sales Department.

Motor rated torque

Nominal value of torque developed by PMSM for continuous operation, when the continuous nominal current is applied to the windings.

Continuous output torque

Actuator calculated output torque from PMSM rated performance including reducer ratio, efficiency and rated output torque of reducer.

Motor rated current

Is the nominal value of the electric RMS current used to obtain the continuous nominal torque from the electromotor.*)

Motor stall torque

Is the value of torque produced at zero speed for continuous functioning *).

Motor stall current

The nominal value of the electric RMS current used to obtain the stall torque from the electromotor.*)

Motor peak torque

The nominal value of torque developed for a limited period of time, when the peak current is applied to the windings.

Momentary peak output torque

Actuator peak output torque for limited period of time during acceleration and deceleration phase of duty cycle for acceleration or deceleration of inertial loads. It is calculated from PMSM peak performance including reducer ratio, efficiency and Acceleration/Braking Torque limits of reducer.

Motor peak current

It is the value of the electric current used to obtain the peak torque from the electromotor.

Motor back-EMF constant

It is the ratio of terminal to terminal peak voltage generated in the windings when motor rotor is mechanically rotated at a speed of 1000 rpm.

Motor torque constant

Is the ratio of the developed torque to the applied RMS current for the electromotor specific winding.*)

Terminal resistance (L-L)

The winding resistance measured between any two leads of the winding in particular configuration at 25 °C. Might differ to catalogue values with dependence to type of connection or cable lengths.

Terminal inductance (L-L)

The winding inductance measured between any two leads of the winding in particular configuration at 25°C at 1 kHz. Permanent magnets of rotor influences measured value of inductance which is varying over each electrical cycle.

Number of poles

Is the number of permanent magnet poles of the rotor (p is the number of pole pairs).

Electromagnetic brake DC supply

For DriveSpin® with option electromagnetic brake (c) # 0 (see ordering code), it is voltage required to release/disengage electromagnetic power off brake. For special modifications please contact our sales department.

Electromagnetic brake torque (at motor)

For DriveSpin® with option electromagnetic brake (c) # 0 (see ordering code), it is value of torque generated by electromagnetic brake at the input shaft of built-in reduction gear mechanism. It is nominal value at standard working conditions stated by manufacturer.

Protection class

The degree of protection according to IS/IEC 60034-5. Assumes DriveSpin® mounted in accordance with assembly instructions and in case of connectors (see type of electrical connection) with counterparts properly connected.

Motor insulation class

Define maximum winding temperature and permissible winding temperature rise in relation to predefined allowed ambient temperature range. (Reduction gear limit temperature must be also taken into consideration). Winding classification F for thermal class 155°C. Each 10°C rise above the rating may reduce the motor lifetime by one half. For example electromotor operating at 180°C have an estimated life of 8500 hours with class F.

Paint

Standardly RAL 9005 black colour. For special painting please contact our sales department.

Motor number of phases, Motor type of connection

Defines electromotor windings arrangement and count.

Inertia at input

Represents calculated value of sum of inertia of all rotating parts at input shaft see Fig. 11.1. For dynamic applications where high accuracy and responsiveness is needed reflected load inertia JL in should be less than 5-times of inertia at input JL out. For calculation of reflected inertia of load to input shaft use following equation:

$$J_{\text{L in}} = \frac{J_{\text{L out}}}{i^2} \qquad \begin{array}{c} J_{\text{L in}} & - \text{ reflected inertia to input shaft} \\ J_{\text{L out}} & - \text{ load inertia} \\ i & - \text{ gear ratio} \end{array}$$

Duty cycle

IEC 60034-1 (the International Electrotechnical Commission) duty cycles designations:

Tab. 11.b: Duty cycles			
S1	Continuous duty	The motor works at a constant load for enough time to reach temperature equilibrium.	
S2	Short-time duty	The motor works at a constant load, but not long enough to reach temperature equilibrium. The rest periods are long enough for the motor to reach ambient temperature.	
S3	Intermittent periodic duty	Sequential, identical run and rest cycles with constant load. Temperature equilibrium is never reached. Starting current has little effect on temperature rise.	
S4	Intermittent periodic duty with starting	Sequential, identical start, run and rest cycles with constant load. Temperature equilibrium is not reached, but starting current affects temperature rise.	
S5	Intermittent periodic duty with electric braking	Sequential, identical cycles of starting, running at constant load and running with no load. No rest periods.	
S6	Continuous operation with intermittent load	Sequential, identical cycles of running with constant load and running with no load. No rest periods.	
S7	Continuous operation with electric braking	Sequential identical cycles of starting, running at constant load and electric braking. No rest periods.	
S8	Continuous operation with periodic changes in load and speed	Sequential, identical duty cycles run at constant load and given speed, then run at other constant loads and speeds. No rest periods.	
S9	Duty with non-periodic load and speed variations	Load and speed vary periodically within the permissible operating range. Frequent overloading may occur.	
S10	Duty with discrete constant loads and speeds	Duty with discrete number of load/speed combinations, with these maintained long enough to reach thermal equilibrium.	

Thermal Equilibrium is the state reached when the temperature rise of the machine does not vary by more than 2K=2°C per hour. High precision reduction gears are preferred for intermittent duty cycles (S3-S8). The S1 continuous duty cycles needs to be consulted with manufacturer.

^{*)} The stated values are for frameless electromotor mounted on a standard aluminum heat sink during the process of motor manufacture.

12. Assembly

Values of the axial and radial run-out of the output flange

Tab. 12.a: Values of the a	2.a: Values of the axial and radial run-out of the output flange				
Туре	T [mm]	Z [mm]			
050	0.006	0.015			
060	0.007	0.020			
070	0.007	0.020			
095	0.02	0.03			
110	0.008	0.025			
115	0.03	0.05			
140	0.009	0.025			
155	0.02	0.04			

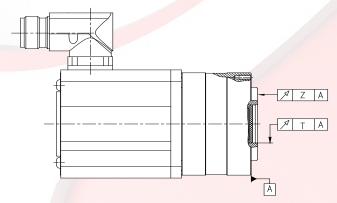


Fig. 12.1: Axial and radial runout to base A

Installation of components on the output flange of the electric actuator

Before the installation, remove the layer of preservation oil from the surface of the reduction gear part of the actuator by means of a clean and dry cloth. Degrease the contact surfaces of the friction connections. During the cleaning, take care the degreasing agent does not get into the reduction gear part of the actuator. The contact surfaces of the reduction gear part of the actuator are not protected against corrosion. If you need more information, please contact the SPINEA Sales Department or our regional representative. During the assembly of screw connections, proceed as follows: Screw a screw into a functional thread until the screw head sits on the part being connected. Screw in all screws in that way and only then tighten them with a wrench. Tighten the screws twice in turns with the required torque. Tighten the screws gradually because otherwise irregular tightening of the connection and thus also deformation of the connection of the parts may occur. Tighten the screws along the perimeter of a circle in a cross-like manner, i.e. as shown in Fig. 12.2. In the case of a connection subjected to shocks and cyclical loads, it is necessary to secure the connection against self-loosening.

Fig. 12.2: Tighten the screws along the perimeter of a circle in a cross-like manner

For the safe transmission of torque it is always necessary to use the full number of the screws! The tightening torques of the screws are specified in Tab. 12.c.

Tab. 12.c: Tightening torques of screws				
Screw	Tightening torque [Nm]	Clamping force [N]	Screw material class and specification	
М3	1.6	3 100		
M4	4.3	5 300		
М5	8.4	8 800	ISO 000 TI 100 120	
M6	14	12 400	ISO 898 TI 10.9 or 12.9	
М8	35	22 750		
M10	70	36 200		

The allowed torques transmitted by the connection screws on the output flange and the casing are contained in Tab. 12.d.

Tab. 12.d: Values of the axial and radial run-out of the output flange						
Туре	Output flange			Case		
	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]	Number x screw	Pitch diameter [mm]	Transmitted torque [Nm]
050	10xM4	28	100	4xM5	63	165
060	8xM4	34	108	16xM3	64	238
070	14xM4	42	233	16xM3	64	238
085	12xM5	50	470	18xM3	81	400
095	18xM4	53	85	18×M4	88	85
110	14xM6	69	898	12xM5	100	792
115	18xM5	68	173	18xM4	108	173
125	18xM6	71	1 190	18xM5	116	1 380
	14xM6	92	1 740	12×M6	127	1 410
140	8xM6	74				
155	28xM5	146	1 300	18xM6	100	1 480
	14xM8	110	3 700	12xM8	156	3 200
170	8xM8	80				

13. FAO

Feedback encoders:

- 01. Q: Is it possible implement feedback encoder which is not in standard range or even implement my own feedback encoder??
 - A: Yes, we can implement any type of feedback encoder if there is no hardware or mounting limit. In specific cases we can make custom solution for you and implement your feedback encoder.
- 02. Q: How can i implement safety function with feedback encoders?
 - A: We can use single Functional Safety encoder or use 2 independent encoders to provide full safety function for your application.
- 03. Q: How it's possible make more precise control of drive?
 - A: There are 2 ways how to do it. First is use feedback encoder with better resolution and second is use feedback encoder on output flange of reduction gear.

Servomotors:

- 01. Q: What kind of servomotors are you using?
 - A: We are using Permanent Magnet Synchronous Motors (PMSM).
- 02. Q: Can i choose DC BUS voltage which is not from your standard range?
 - A: Our standard DC BUS voltage is 24 V, 320 V and 560 V but we can implement servomotor with your requested DC BUS voltage after check by our engineers.
- 03. Q: How can i control servomotor without standard feedback encoder?
 - A: We can provide you solution with hall sensors inside servomotor for application with low resolution requirements.
- 04. Q: Is it possible use different torque or speed of used servomotors in standard DriveSpin® series?
 - A: If our standard DriveSpin® series doesn't fit your requirements, we can implement different servomotor or design new one based on your requirements.

Ingress Protection (IP):

- 01. Q: How can i improve protection of standard DriveSpin®?
 - A: Ingress Protection of our standard product range is IP 64. If your application requires higher IP, we can design all components of DriveSpin® actuators to reach IP 65, 66 or even 67.

DriveSpin® mechanical design:

- 01. Q: Is it possible prepare special design of actuator housing?
 - A: If housing of standard DriveSpin® series is not suitable for you, we can prepare any special design of actuator housing where you can define shape of housing, mounting elements or fixation points which are required for your project.
- 02. Q: Can i make actuator from any TwinSpin® Reduction gear?
 - A: Yes, if you will choose TwinSpin® reduction gear and define other electro-mechanical parameters, we can prepare complete solution for you.
- 03. Q: Do i need develop completely new product if i have some specific request?
 - A: In many cases is not necessary develop completely new product, just change existing mechanical or electrical part of actuator based on your request.

Electrical connection:

- 01. Q: Is it possible use different connectors for standard DriveSpin® series?
 - A: Yes, we can implement your special connector for applications where it is required.
- 02. Q: Can i use only one connector instead of 2?
 - A: For some application it is possible. We have in our product range Hybrid connectors or we can use any other connector which will fit technical requirements, for example maximal current for power pins or available quantity of signal pins for used feedback encoder.

Brakes:

- O1. Q: Can i use brake in actuator?
 - A: Yes, we can implement standard 24 V electromagnetic brake for static applications where brake hold the load in absence of power.
- 02. Q: It is possible use brake for dynamic applications as well?
 - A: Yes it is possible, but in this case calculation of brake parameters is different than in static application brake and need to be consulted with manufacturer.
- 03. Q: What other modifications are avaliable for brakes?
 - A: We can implement brakes with different voltage, hand release and other special modifications.

Accessories:

- 01. Q: Do you have avaliable any accessories to actuators?
 - A: We have available Cables between servo drive and actuator with standard used connectors and length up to 99.9

14. YourSpin - General information

CUSTOMERS / SPECIAL SOLUTIONS

Customer requirements often call for special solutions. Thanks to many years of experience in technical support and engineering, we realize highly professional solutions according to customer requirements. We design various design modifications of standard products and solutions of higher assembled units TwinSpin® series G, T, E, H and M, DriveSpin® in series DS, DSH, DSM, DSF and RotoSpin modules. Our technical support is based on professional recommendations for various applications of TwinSpin®, DriveSpin® and RotoSpin in industrial segments such as robotics, automation, metalworking, medicine, camera systems, security and others. The advantages of these special solutions are their compact and modular design, easy connection to the supporting structure and technically applied sealing elements

Advantages

- · compact design
- modular design
- · easy connection with the support structure
- technically aplied sealing elements

14.1 Customers / Special reduction gears

TwinSpin® reduction gear with right angle gearbox

Advantages

- · poossibility of a right-angle motor connection
- · higher input speeds
- smaller servomotor dimensions
- · low lost motion and hysteresis on output
- compact solution

The high precision reduction gear with the possibility of a right-angle motor connection also allows the increase of the total reduction ratio by using an input right-angle reduction gear. This allows to use a servomotor with a lower power and a higher speed, i.e. a smaller motor. This solution is available for the whole line of E series reduction gears.

Note: For more information please contact the SPINEA sales department.

TwinSpin® hollow shaft reduction gear with a pre-stage

Advantages

- · high-precision reduction gear
- · possibility to have a motor in an offset position
- high reduction ratio in two stages
- · coupling and motor flange provide easy motor mounting
- pre-greased and fully sealed solution

A TwinSpin® hollow shaft reduction gear with a pre-stage and offset motor position - a solution for applications that require a completely sealed node with a large through hole for passing cables, tubing or additional shafts.

14.2 Customers / Special solutions

RotoSpin - High precision rotery modules

The rotary positioning module, which is offered under the RotoSpin brand, is designed for the building of positioning devices and rotary tables, which are used in automated and robotized workplaces. The RotoSpin module features a high reduction ratio, high kinematic precision, low backlash motion, high torque capacity, low weight, and a compact design.

RotoSpin - Rotery modules - series A

Advantages

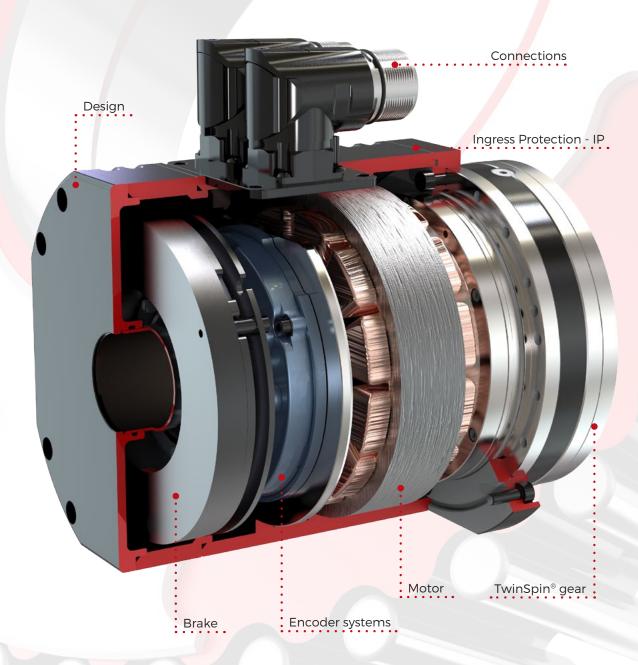
- possibility to build into circular holes
- · low weigh and small dimensions
- · wide area of use
- · easy attachment

The RotoSpin A are called flange ones. They feature a flange design, which allows the module's attachment and building into a structure with a circular hole. According to their size, RotoSpins A are manufactured in four size categories with load capacities of 60, 250, 500, and 1000 kg respectively. Due to their small dimensions and low weight, the RS-A modules are used mainly in moving parts of positioning devices. If the RS modules are loaded with a higher than allowed moment or shock load, we use them in combination with a support bearing.

RotoSpin - Rotery modules - series B

Advantages

- · possibility to attach to flat surfaces
- · compact design
- · wide area of use
- · easy attachment


The RotoSpin B are called flange ones. They feature a box design, which allows the module's easy attachment to a flat surface by means of feet. According to their size, RotoSpins B are manufactured in four size categories with load capacities of 60, 250, 500, and 1000 kg respectively. We supply the RS1000 module in two versions according to the foot width. The B version with narrow feet is used where it is necessary to support a long workpiece or welded piece by means of a support module. The module with wide feet is marked as RS 1000-BX and it is used for the clamping of short workpieces without support modules.

14.3 Customers / Special actuators

DriveSpin® actuators - design "Your actuators"

The rotary electric actuator can be designed and manufactured according to your specific application requirements. The input and output technical specification can be designed and optimized for you

Advantages

- · create your own design
- integrate unique mechatronics componenets (Servomotor, Enoder)
- · make your own color design
- optimize input and output characteristcs of the actuator according to your application

Motor

Motors are directly implemented to DriveSpin®, without any need for aditional coupling. This help to reduce weight and dimensions of whole solution. Main type of motor is synchronous motor with permanent magnets. Standard verisons of motor implemented in DriveSpin® are 24V, 320V and 560V. Low voltage range is possible to modify to 36V 48V and 60V, high voltage to 680V. These motors are custom solution and they are modified to suit our customer. If there is special requirement or our solution is not suitable for you we can implement any frameless motor and calculate final parameters of DriveSpin®.

Encoder systems

DriveSpin® actuator with cycloidal gearbox excel in terms of precision positioning however this would not be possible without the implementation of position feedback sensors. Our primary industries such as robotics, machine tool, dental machines, CNCS require different accuracy standards. Thus, requirements for motion control differ on application. Therefore, our company consults your needs and requirements. Our specialists will analyze your application and find the best solution in terms of accuracy, precision measurement, robustness as well as compatibility with your control system. Actuator series DS, DSH, DSM as well as DSF come with a wide variety of feedback systems. Our portfolio includes sensors from basic feedback systems used in most servo drives such as incremental encoders to next generation protocol encoders such as (EnDat 2.2, Hiperface DSL, BiSS-C). Technical parameters like resolution, sensor protocol, single vs. multiturn are specified in the process of development of the custom product. Supported encoder systems: HIPERFACE®, HIPERFACE® DSL, EnDat 2.2, Resolver, BiSS Interface, DRIVE-CLiQ, FANUC.

Brake

Brakes in our actuators are mostly used in static applications which statically hold the load in absence of power. Usually is used electromagnetic brake, where in currentless state (without connected DC voltage) the armature becomes engaged with brake disk and after apply DC voltage to brake, magnetic field is neutralized and brake released to free rotation of actuator. Electromagnetic brakes are also used in dynamic applications where actuator use brake for deceleration or as safety brake, but these application requires different calculation and implementation to the actuator. Standard in our product range is 24 VDC electromagnetic brake for static applications, but we can implement also 12 VDC electromagnetic brakes, brake with handle release or any other brakes developed for servomotors.

Connections

Electrical as well as mechanical connection used for standard DS, DSH, DSM and DSF are all available in this catalogue. However, our electrical and mechanical engineering team can adjust most of the connection possibilities according to the requirements of the end customer.

Design

Every piece of DriveSpin® series, either DS, DSM, DSH or DSF, has its own unique design. If you require specific design of the housing or mounting flange, or if you need to adjust design to your own aplication, our specialists are ready to prepare a solution according your demands. It is also possible to place a special ID plate (e.g. QR code) to meet your production processes. Of course, the use of your specific colouring is also possible

Ingress Protection - IP

Ingress Protection of our standard product range is IP 64. If your application requires higher IP, we can design all components of DriveSpin® actuators to reach IP 65, 66 or even 67.

Testing

All our products from the DS, DSH, DSM and DSF series are subjected for testing are standardly tested and comply with the European standards, CE. Our company dispose with various test benches, which can be used for simulation of various duty cycles according to the customer specification. We are able to provide for you independent testing of our products according your requirements and our capabilities

15. General information

15.1 Maintenance

The reduction gear does not require any special maintenance. During its installation please observe the respective dimensional and positional tolerances of the centering diameters (Chapter 5.3). The reduction gear is a high-precision product, therefore it requires careful manipulation, installation, and demounting.

Any tampering with the reduction gear (disassembly, assembly) constitutes immediate loss of warranty. If a reduction gear fails due to a fault in its manufacturing or a material defect, please inform the manufacturer, who will carry out professional repair or replacement.

15.2 Delivery conditions

The reduction gear is delivered completely assembled, without fixing screws, filled with grease, and in a protective package. Not all series are fully sealed as a standard. Each reduction gear is identified with a type label, containing the following data:

- manufacturer
- product type and size
- reduction ratio
- model
- serial number

15.3 Transport and storage

The reduction gears should be transported in closed transport vehicles, in containers secured against movement or overturning. The mode of transport should follow the mutual agreement between the customer and the supplier. In addition, the product must be protected against the elements, aggressive vapours, dust, and mechanical damage. The manufacturer recommends to store TwinSpin® reduction gears in the original transport package.

The standard packaging in the original package ensures corrosion protection for the period of 6 months during storage in closed rooms with the ambient temperature from 5°C to 25°C and the relative humidity up to 60%. After 6 months it is necessary to preserve the reduction gear again.

15.4 Warranty

The warranty is specified in the General Delivery Terms of SPINEA, s.r.o.. For more information visit our website: www.spinea.com

15.5 Final statement

Any design changes, modifications and improvements, aimed at increasing the technological level of the reduction gear, which, however, do not change the main technical parameters, installation and connection dimensions, may be performed by the manufacturer without prior consent from the customer. Any design changes and/or modifications affecting the critical properties and parameters of the reduction gear are subject to an approval procedure.

15.6 Cautions concerning the application of the TwinSpin® high precision reduction gear

If the end user of the product works in the military field or if the product is to be used for the manufacturing of weapons, the product may be subject to trade controls and export regulations. Before the exporting of the product therefore please check the export and trade control terms and conditions and take the required actions.

- If a fault or a malfunction of the product may directly endanger human lives or if the product is used in devices that may damage the human health (nuclear, space, healthcare facilities, various security systems, etc.), regular checks are essential. In such a case please contact our sales agent or our nearest business office.
- Although this product has been manufactured under strict quality control, if it is to be used in machines that, in the event
 of a malfunction, may seriously endanger human lives or damage equipment, it is essential to adopt appropriate safety
 measures.
- If this product is to be used in a special environment (clean rooms, food industry, etc.), please contact our sales agent or our nearest business office.

For more information contact our sales department, or visit our website: www.spinea.com

SPINEA, s.r.o.

Okrajová 33 080 05 Prešov Slovakia, EU

Tel: +421 51 770 01 56 E-mail: info@spinea.com Web: www.spinea.com

